Absence of diffusion and fractal geometry in the Holstein model at high
temperature
- URL: http://arxiv.org/abs/2007.00817v1
- Date: Thu, 2 Jul 2020 00:16:16 GMT
- Title: Absence of diffusion and fractal geometry in the Holstein model at high
temperature
- Authors: Chen-Yen Lai and S. A. Trugman
- Abstract summary: We investigate the dynamics of an electron coupled to dispersionless optical phonons at high temperatures.
In one dimension, the electron moves in a constant direction and does not turn around.
In two dimensions, the electron follows and then continues to retrace a fractal trajectory.
- Score: 0.24366811507669126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamics of an electron coupled to dispersionless optical
phonons in the Holstein model, at high temperatures. The dynamics is
conventionally believed to be diffusive, as the electron is repeatedly
scattered by optical phonons. In a semiclassical approximation, however, the
motion is not diffusive. In one dimension, the electron moves in a constant
direction and does not turn around. In two dimensions, the electron follows and
then continues to retrace a fractal trajectory. Aspects of these nonstandard
dynamics are retained in more accurate calculations, including a fully quantum
calculation of the electron and phonon dynamics.
Related papers
- Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - On the analogy between stochastic electrodynamics and nonrelativistic
quantum electrodynamics [0.0]
I prove that an approximation to first order in Planck constant has formal analogy with electrodynamics (SED)
The analogy elucidates why SED agrees with quantum theory for particle Hamiltonians in coordinates and momenta, but fails otherwise.
arXiv Detail & Related papers (2022-12-03T19:29:14Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Non-Markovian perturbation theories for phonon effects in
strong-coupling cavity quantum electrodynamics [0.0]
phonon interactions are inevitable in cavity quantum electrodynamical systems based on solid-state emitters or fluorescent molecules.
It remains a significant theoretical challenge to describe such effects in a computationally efficient manner.
We consider four non-Markovian perturbative master equation approaches to describe such dynamics.
arXiv Detail & Related papers (2021-03-26T08:32:19Z) - Two-step dynamics of photoinduced phonon entanglement generation between
remote electron-phonon systems [0.0]
The generation of quantum entanglement between phonons in photoirradiated remote electron-phonon systems is numerically studied.
The dynamics of the phonon entanglement can be observed by time-resolved spectroscopy on the scattered light.
arXiv Detail & Related papers (2020-05-29T15:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.