Users' Concern for Privacy in Context-Aware Reasoning Systems
- URL: http://arxiv.org/abs/2007.01561v1
- Date: Fri, 3 Jul 2020 09:13:57 GMT
- Title: Users' Concern for Privacy in Context-Aware Reasoning Systems
- Authors: Matthias Forstmann, Alberto Giaretta, and Jennifer Renoux
- Abstract summary: People are more concerned about third parties accessing data gathered by environmental sensors as compared to physiological sensors.
Participants indicated greater concern about unfamiliar third parties as opposed to familiar third parties.
These concerns are predicted and (to a lesser degree) causally affected by people's beliefs about how much can be inferred from these types of data.
- Score: 0.17205106391379021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context-aware reasoning systems allow drawing sophisticated inferences about
users' behaviour and physiological condition, by aggregating data from
seemingly unrelated sources. We conducted a general population online survey to
evaluate users' concern about the privacy of data gathered by these systems. We
found that people are more concerned about third parties accessing data
gathered by environmental sensors as compared to physiological sensors.
Participants also indicated greater concern about unfamiliar third parties
(e.g., private companies) as opposed to familiar third parties (e.g.,
relatives). We further found that these concerns are predicted and (to a lesser
degree) causally affected by people's beliefs about how much can be inferred
from these types of data, as well as by their background in computer science.
Related papers
- Investigating Vulnerabilities of GPS Trip Data to Trajectory-User Linking Attacks [49.1574468325115]
We propose a novel attack to reconstruct user identifiers in GPS trip datasets consisting of single trips.
We show that the risk of re-identification is significant even when personal identifiers have been removed.
Further investigations indicate that users who frequently visit locations that are only visited by a small number of others tend to be more vulnerable to re-identification.
arXiv Detail & Related papers (2025-02-12T08:54:49Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
This paper characterizes the impact of Differential Privacy on bias and unfairness in the context of releasing information about networks.
We consider a network release problem where the network structure is known to all, but the weights on edges must be released privately.
Our work provides theoretical foundations and empirical evidence into the bias and unfairness arising due to privacy in these networked decision problems.
arXiv Detail & Related papers (2024-08-08T08:37:37Z) - A Survey on Differential Privacy for SpatioTemporal Data in Transportation Research [0.9790236766474202]
In transportation, we are seeing a surge in intemporal data collection.
Recent developments in differential privacy in the context of such data have led to research in applied privacy.
To address the need for such data in research and inference without exposing private information, significant work has been proposed.
arXiv Detail & Related papers (2024-07-18T03:19:29Z) - Banal Deception Human-AI Ecosystems: A Study of People's Perceptions of LLM-generated Deceptive Behaviour [11.285775969393566]
Large language models (LLMs) can provide users with false, inaccurate, or misleading information.
We investigate peoples' perceptions of ChatGPT-generated deceptive behaviour.
arXiv Detail & Related papers (2024-06-12T16:36:06Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
We use Brain-Computer Interfacing technology to infer users' preferences, their attentional correlates towards visual content, and their associations with affective experience.
We link these to relevant applications, such as information retrieval, personalized steering of generative models, and crowdsourcing population estimates of affective experiences.
arXiv Detail & Related papers (2024-05-15T20:41:46Z) - Embedding Privacy in Computational Social Science and Artificial Intelligence Research [2.048226951354646]
Preserving privacy has emerged as a critical factor in research.
The increasing use of advanced computational models stands to exacerbate privacy concerns.
This article contributes to the field by discussing the role of privacy and the issues that researchers working in CSS, AI, data science and related domains are likely to face.
arXiv Detail & Related papers (2024-04-17T16:07:53Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Contributing to Accessibility Datasets: Reflections on Sharing Study
Data by Blind People [14.625384963263327]
We present a pair of studies where 13 blind participants engage in data capturing activities.
We see how different factors influence blind participants' willingness to share study data as they assess risk-benefit tradeoffs.
The majority support sharing of their data to improve technology but also express concerns over commercial use, associated metadata, and the lack of transparency about the impact of their data.
arXiv Detail & Related papers (2023-03-09T00:42:18Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
We looked into how explainability might help to tackle this problem.
We created privacy explanations that aim to help to clarify to end users why and for what purposes specific data is required.
Our findings reveal that privacy explanations can be an important step towards increasing trust in software systems.
arXiv Detail & Related papers (2022-10-18T09:30:37Z) - A Systematic Literature Review on Wearable Health Data Publishing under
Differential Privacy [2.099922236065961]
Wearable devices generate different types of physiological data about the individuals.
Differential Privacy (DP) has emerged as a proficient technique to publish privacy sensitive data.
arXiv Detail & Related papers (2021-09-15T14:43:00Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
The U.S. Census Bureau releases data sets and statistics about groups of individuals that are used as input to a number of critical decision processes.
To conform to privacy and confidentiality requirements, these agencies are often required to release privacy-preserving versions of the data.
This paper studies the release of differentially private data sets and analyzes their impact on some critical resource allocation tasks under a fairness perspective.
arXiv Detail & Related papers (2021-05-16T21:04:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.