Preparing symmetry broken ground states with variational quantum
algorithms
- URL: http://arxiv.org/abs/2007.01582v2
- Date: Wed, 15 Jul 2020 08:04:42 GMT
- Title: Preparing symmetry broken ground states with variational quantum
algorithms
- Authors: Nicolas Vogt, Sebastian Zanker, Jan-Michael Reiner, Thomas Eckl, Anika
Marusczyk, Michael Marthaler
- Abstract summary: In solid state physics, finding the correct symmetry broken ground state of an interacting electron system is one of the central challenges.
In this work, we discuss three variations of the Variational Hamiltonian Ansatz (VHA) designed to find the correct broken symmetry states.
For the calculation we simulate a gate-based quantum computer and also consider the effects of dephasing noise on the algorithms.
- Score: 0.559239450391449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most promising applications for near term quantum computers is the
simulation of physical quantum systems, particularly many-electron systems in
chemistry and condensed matter physics. In solid state physics, finding the
correct symmetry broken ground state of an interacting electron system is one
of the central challenges. The Variational Hamiltonian Ansatz (VHA), a
variational hybrid quantum-classical algorithm especially suited for finding
the ground state of a solid state system, will in general not prepare a broken
symmetry state unless the initial state is chosen to exhibit the correct
symmetry. In this work, we discuss three variations of the VHA designed to find
the correct broken symmetry states close to a transition point between
different orders. As a test case we use the two-dimensional Hubbard model where
we break the symmetry explicitly by means of external fields coupling to the
Hamiltonian and calculate the response to these fields. For the calculation we
simulate a gate-based quantum computer and also consider the effects of
dephasing noise on the algorithms. We find that two of the three algorithms are
in good agreement with the exact solution for the considered parameter range.
The third algorithm agrees with the exact solution only for a part of the
parameter regime, but is more robust with respect to dephasing compared to the
other two algorithms.
Related papers
- A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Construction of Antisymmetric Variational Quantum States with Real-Space
Representation [0.0]
A major difficulty in first quantization with a real-space basis is state preparation for many-body electronic systems.
We provide a design principle for constructing a variational quantum circuit to prepare an antisymmetric quantum state.
We implement the variational quantum eigensolver to obtain the ground state of a one-dimensional hydrogen molecular system.
arXiv Detail & Related papers (2023-06-14T11:11:31Z) - Automated detection of symmetry-protected subspaces in quantum
simulations [0.0]
We introduce two classical algorithms, which efficiently compute and elucidate features of symmetry-protected subspaces.
These algorithms lend themselves to the post-selection of quantum computer data, optimized classical simulation of quantum systems, and the discovery of previously hidden symmetries in quantum mechanical systems.
arXiv Detail & Related papers (2023-02-16T21:17:48Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Using gradient-based algorithms to determine ground state energies on a
quantum computer [0.0]
Variational algorithms are promising candidates to be implemented on near-term quantum computers.
We study how different methods for obtaining the gradient, specifically the finite-difference and the parameter-shift rule, are affected by shot noise and noise of the quantum computer.
arXiv Detail & Related papers (2021-09-17T09:12:43Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Iterative Quantum Assisted Eigensolver [0.0]
We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian.
Our algorithm builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers.
arXiv Detail & Related papers (2020-10-12T12:25:16Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.