論文の概要: Balanced Symmetric Cross Entropy for Large Scale Imbalanced and Noisy
Data
- arxiv url: http://arxiv.org/abs/2007.01618v1
- Date: Fri, 3 Jul 2020 11:24:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:37:05.428118
- Title: Balanced Symmetric Cross Entropy for Large Scale Imbalanced and Noisy
Data
- Title(参考訳): 大規模不平衡・雑音データに対する平衡対称クロスエントロピー
- Authors: Feifei Huang, Jie Li and Xuelin Zhu
- Abstract要約: ディープ畳み込みニューラルネットワークは、大規模視覚分類タスクにおいて多くの注目を集めている。
本稿では,大規模製品認識タスクのための多種多様な深層畳み込みニューラルネットワークアーキテクチャについて検討する。
- 参考スコア(独自算出の注目度): 8.883228967540402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolution neural network has attracted many attentions in large-scale
visual classification task, and achieves significant performance improvement
compared to traditional visual analysis methods. In this paper, we explore many
kinds of deep convolution neural network architectures for large-scale product
recognition task, which is heavily class-imbalanced and noisy labeled data,
making it more challenged. Extensive experiments show that PNASNet achieves
best performance among a variety of convolutional architectures. Together with
ensemble technology and negative learning loss for noisy labeled data, we
further improve the model performance on online test data. Finally, our
proposed method achieves 0.1515 mean top-1 error on online test data.
- Abstract(参考訳): 深層畳み込みニューラルネットワークは、大規模視覚分類タスクにおいて多くの注目を集めており、従来の視覚分析手法と比較して大幅な性能向上を達成している。
本稿では,大規模製品認識タスクのための多種多様な深層畳み込みニューラルネットワークアーキテクチャについて検討する。
広範な実験により、pnasnetは様々な畳み込みアーキテクチャで最高のパフォーマンスを達成していることが示された。
ノイズラベルデータに対するアンサンブル技術と負の学習損失を併用することで,オンラインテストデータのモデル性能をさらに向上させる。
最後に,提案手法はオンラインテストデータ上で0.1515の平均1エラーを実現する。
関連論文リスト
- Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - On the effectiveness of partial variance reduction in federated learning
with heterogeneous data [27.527995694042506]
クライアント間の最終分類層の多様性は、FedAvgアルゴリズムの性能を阻害することを示す。
そこで本研究では,最終層のみの分散還元によるモデル修正を提案する。
同様の通信コストや低い通信コストで既存のベンチマークを著しく上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-05T11:56:35Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
生画像のスケーリングはアウト・オブ・ディストリビューションデータを生成するため、ネットワークを騙すための敵攻撃の可能性がある。
本研究では,ImageNet Challengeデータセットのサブセットを複数でスケーリングすることで,Scaling-DistortionデータセットのImageNet-CSを提案する。
論文 参考訳(メタデータ) (2022-09-02T08:06:58Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Robust Pooling through the Data Mode [5.7564383437854625]
本稿では,新しいロバストなプール層を含む新しいディープラーニングソリューションを提案する。
提案するプール層では,クラスタがモデルを示すため,RANSACとヒストグラムという2つの手法を用いて,モデム/クラスタのデータを探す。
我々は、プーリング層をポイントベースやグラフベースニューラルネットワークなどのフレームワークでテストし、ロバスト・オブ・ザ・アーティカルな手法と比較して、ロバストなロバスト性を示した。
論文 参考訳(メタデータ) (2021-06-21T04:35:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Dataset Condensation with Gradient Matching [36.14340188365505]
本研究では,大規模なデータセットを,深層ニューラルネットワークをスクラッチからトレーニングするための情報的合成サンプルの小さなセットに凝縮させることを学習する,データセット凝縮という,データ効率のよい学習のためのトレーニングセット合成手法を提案する。
いくつかのコンピュータビジョンベンチマークでその性能を厳格に評価し、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:30:52Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。