Gaussian Process Regression with Local Explanation
- URL: http://arxiv.org/abs/2007.01669v3
- Date: Wed, 2 Dec 2020 10:13:54 GMT
- Title: Gaussian Process Regression with Local Explanation
- Authors: Yuya Yoshikawa, Tomoharu Iwata
- Abstract summary: We propose GPR with local explanation, which reveals the feature contributions to the prediction of each sample.
In the proposed model, both the prediction and explanation for each sample are performed using an easy-to-interpret locally linear model.
For a new test sample, the proposed model can predict the values of its target variable and weight vector, as well as their uncertainties.
- Score: 28.90948136731314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian process regression (GPR) is a fundamental model used in machine
learning. Owing to its accurate prediction with uncertainty and versatility in
handling various data structures via kernels, GPR has been successfully used in
various applications. However, in GPR, how the features of an input contribute
to its prediction cannot be interpreted. Herein, we propose GPR with local
explanation, which reveals the feature contributions to the prediction of each
sample, while maintaining the predictive performance of GPR. In the proposed
model, both the prediction and explanation for each sample are performed using
an easy-to-interpret locally linear model. The weight vector of the locally
linear model is assumed to be generated from multivariate Gaussian process
priors. The hyperparameters of the proposed models are estimated by maximizing
the marginal likelihood. For a new test sample, the proposed model can predict
the values of its target variable and weight vector, as well as their
uncertainties, in a closed form. Experimental results on various benchmark
datasets verify that the proposed model can achieve predictive performance
comparable to those of GPR and superior to that of existing interpretable
models, and can achieve higher interpretability than them, both quantitatively
and qualitatively.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Gaussian Process Probes (GPP) for Uncertainty-Aware Probing [61.91898698128994]
We introduce a unified and simple framework for probing and measuring uncertainty about concepts represented by models.
Our experiments show it can (1) probe a model's representations of concepts even with a very small number of examples, (2) accurately measure both epistemic uncertainty (how confident the probe is) and aleatory uncertainty (how fuzzy the concepts are to the model), and (3) detect out of distribution data using those uncertainty measures as well as classic methods do.
arXiv Detail & Related papers (2023-05-29T17:00:16Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
We show that Sparse Implicit Processes (SIP) is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model.
We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.
arXiv Detail & Related papers (2022-07-21T18:00:01Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
We propose a Gapped Straight-Through ( GST) estimator to reduce the variance without incurring resampling overhead.
This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax.
Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks.
arXiv Detail & Related papers (2022-06-15T01:46:05Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Gaussian Graphical Models as an Ensemble Method for Distributed Gaussian
Processes [8.4159776055506]
We propose a novel approach for aggregating the Gaussian experts' predictions by Gaussian graphical model (GGM)
We first estimate the joint distribution of latent and observed variables using the Expectation-Maximization (EM) algorithm.
Our new method outperforms other state-of-the-art DGP approaches.
arXiv Detail & Related papers (2022-02-07T15:22:56Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
Local Interpretable Model-Agnostic Explanations (LIME) is a popular technique for explaining the prediction of a single instance.
We propose a Gaussian Process (GP) based variation of locally interpretable models.
We demonstrate that the proposed technique is able to generate faithful explanations using much fewer samples as compared to LIME.
arXiv Detail & Related papers (2021-08-16T05:49:01Z) - Latent Gaussian Model Boosting [0.0]
Tree-boosting shows excellent predictive accuracy on many data sets.
We obtain increased predictive accuracy compared to existing approaches in both simulated and real-world data experiments.
arXiv Detail & Related papers (2021-05-19T07:36:30Z) - Gaussian Process Boosting [13.162429430481982]
We introduce a novel way to combine boosting with Gaussian process and mixed effects models.
We obtain increased prediction accuracy compared to existing approaches on simulated and real-world data sets.
arXiv Detail & Related papers (2020-04-06T13:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.