AVP-SLAM: Semantic Visual Mapping and Localization for Autonomous
Vehicles in the Parking Lot
- URL: http://arxiv.org/abs/2007.01813v2
- Date: Wed, 8 Jul 2020 14:13:25 GMT
- Title: AVP-SLAM: Semantic Visual Mapping and Localization for Autonomous
Vehicles in the Parking Lot
- Authors: Tong Qin, Tongqing Chen, Yilun Chen, and Qing Su
- Abstract summary: We exploit robust semantic features to build the map and localize vehicles in parking lots.
We adopt four surround-view cameras to increase the perception range.
We analyze the accuracy and recall of our system and compare it against other methods in real experiments.
- Score: 10.101500923075633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous valet parking is a specific application for autonomous vehicles.
In this task, vehicles need to navigate in narrow, crowded and GPS-denied
parking lots. Accurate localization ability is of great importance. Traditional
visual-based methods suffer from tracking lost due to texture-less regions,
repeated structures, and appearance changes. In this paper, we exploit robust
semantic features to build the map and localize vehicles in parking lots.
Semantic features contain guide signs, parking lines, speed bumps, etc, which
typically appear in parking lots. Compared with traditional features, these
semantic features are long-term stable and robust to the perspective and
illumination change. We adopt four surround-view cameras to increase the
perception range. Assisting by an IMU (Inertial Measurement Unit) and wheel
encoders, the proposed system generates a global visual semantic map. This map
is further used to localize vehicles at the centimeter level. We analyze the
accuracy and recall of our system and compare it against other methods in real
experiments. Furthermore, we demonstrate the practicability of the proposed
system by the autonomous parking application.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Smart Camera Parking System With Auto Parking Spot Detection [1.0512475026060208]
We provide a novel approach called PakSta for identifying the state of parking spots automatically.
Our method utilizes object detector from PakLoc to simultaneously determine the occupancy status of all parking lots within a video frame.
The efficacy of our proposed methodology on the PKLot dataset results in a significant reduction in human labor of 94.25%.
arXiv Detail & Related papers (2024-07-07T19:00:11Z) - Haris: an Advanced Autonomous Mobile Robot for Smart Parking Assistance [2.3779780917500544]
The system employs simultaneous localization and mapping (SLAM) for autonomous navigation and precise mapping of the parking area.
The proposed system has the potential to improve the management of short-term large outdoor parking areas in crowded places such as sports stadiums.
arXiv Detail & Related papers (2024-01-31T11:00:26Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - Parking Analytics Framework using Deep Learning [1.4146420810689422]
We present a methodology to monitor car parking areas and to analyze their occupancy in real-time.
The solution is based on a combination between image analysis and deep learning techniques.
arXiv Detail & Related papers (2022-03-15T11:16:59Z) - Semantic Image Alignment for Vehicle Localization [111.59616433224662]
We present a novel approach to vehicle localization in dense semantic maps using semantic segmentation from a monocular camera.
In contrast to existing visual localization approaches, the system does not require additional keypoint features, handcrafted localization landmark extractors or expensive LiDAR sensors.
arXiv Detail & Related papers (2021-10-08T14:40:15Z) - Deep Multi-Task Learning for Joint Localization, Perception, and
Prediction [68.50217234419922]
This paper investigates the issues that arise in state-of-the-art autonomy stacks under localization error.
We design a system that jointly performs perception, prediction, and localization.
Our architecture is able to reuse computation between both tasks, and is thus able to correct localization errors efficiently.
arXiv Detail & Related papers (2021-01-17T17:20:31Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
We use vehicle-to-vehicle (V2V) communication to improve the perception and motion forecasting performance of self-driving vehicles.
By intelligently aggregating the information received from multiple nearby vehicles, we can observe the same scene from different viewpoints.
arXiv Detail & Related papers (2020-08-17T17:58:26Z) - Visual Localization for Autonomous Driving: Mapping the Accurate
Location in the City Maze [16.824901952766446]
We propose a novel feature voting technique for visual localization.
In our work, we craft the proposed feature voting method into three state-of-the-art visual localization networks.
Our approach can predict location robustly even in challenging inner-city settings.
arXiv Detail & Related papers (2020-08-13T03:59:34Z) - Parsing-based View-aware Embedding Network for Vehicle Re-Identification [138.11983486734576]
We propose a parsing-based view-aware embedding network (PVEN) to achieve the view-aware feature alignment and enhancement for vehicle ReID.
The experiments conducted on three datasets show that our model outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-04-10T13:06:09Z) - Trained Trajectory based Automated Parking System using Visual SLAM on
Surround View Cameras [0.0]
We discuss the use cases, design and implementation of a trained trajectory automated parking system.
The proposed system is deployed on commercial vehicles and the consumer application is illustrated.
arXiv Detail & Related papers (2020-01-07T16:43:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.