Smart Camera Parking System With Auto Parking Spot Detection
- URL: http://arxiv.org/abs/2407.05469v1
- Date: Sun, 7 Jul 2024 19:00:11 GMT
- Title: Smart Camera Parking System With Auto Parking Spot Detection
- Authors: Tuan T. Nguyen, Mina Sartipi,
- Abstract summary: We provide a novel approach called PakSta for identifying the state of parking spots automatically.
Our method utilizes object detector from PakLoc to simultaneously determine the occupancy status of all parking lots within a video frame.
The efficacy of our proposed methodology on the PKLot dataset results in a significant reduction in human labor of 94.25%.
- Score: 1.0512475026060208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the rising urban population and the consequential rise in traffic congestion, the implementation of smart parking systems has emerged as a critical matter of concern. Smart parking solutions use cameras, sensors, and algorithms like computer vision to find available parking spaces. This method improves parking place recognition, reduces traffic and pollution, and optimizes travel time. In recent years, computer vision-based approaches have been widely used. However, most existing studies rely on manually labeled parking spots, which has implications for the cost and practicality of implementation. To solve this problem, we propose a novel approach PakLoc, which automatically localize parking spots. Furthermore, we present the PakSke module, which automatically adjust the rotation and the size of detected bounding box. The efficacy of our proposed methodology on the PKLot dataset results in a significant reduction in human labor of 94.25\%. Another fundamental aspect of a smart parking system is its capacity to accurately determine and indicate the state of parking spots within a parking lot. The conventional approach involves employing classification techniques to forecast the condition of parking spots based on the bounding boxes derived from manually labeled grids. In this study, we provide a novel approach called PakSta for identifying the state of parking spots automatically. Our method utilizes object detector from PakLoc to simultaneously determine the occupancy status of all parking lots within a video frame. Our proposed method PakSta exhibits a competitive performance on the PKLot dataset when compared to other classification methods.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Truck Parking Usage Prediction with Decomposed Graph Neural Networks [15.291200515217513]
Truck parking on freight corridors faces the major challenge of insufficient parking spaces.
It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices.
This paper presents the Regional Temporal Graph Neural Network (RegT-CN) to predict parking usage across the entire state.
arXiv Detail & Related papers (2024-01-23T17:14:01Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - Automatic Vision-Based Parking Slot Detection and Occupancy
Classification [3.038642416291856]
Parking guidance information (PGI) systems are used to provide information to drivers about the nearest parking lots and the number of vacant parking slots.
Recently, vision-based solutions started to appear as a cost-effective alternative to standard PGI systems.
In this paper, the algorithm that performs Automatic Parking Slot Detection and Occupancy Classification (APSD-OC) solely on input images is proposed.
arXiv Detail & Related papers (2023-08-16T07:44:34Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
We present an approach for automated and geo-referenced calibration of automotive radar sensors.
Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles.
Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner.
arXiv Detail & Related papers (2023-06-23T07:01:10Z) - Vehicle Occurrence-based Parking Space Detection [5.084185653371259]
This work presents an automatic parking space detection method, which receives a sequence of images of a parking lot and returns a list of coordinates identifying the detected parking spaces.
The results using twelve different subsets from the PKLot and CNRPark-EXT parking lot datasets show that the method achieved an AP25 score up to 95.60% and AP50 score up to 79.90%.
arXiv Detail & Related papers (2023-06-16T16:22:45Z) - SHINE: Deep Learning-Based Accessible Parking Management System [1.7109513360384465]
An increase in the number of privately owned vehicles has led to the abuse of disabled parking spaces.
Traditional license plate recognition (LPR) systems have proven inefficient in addressing such a problem in real-time.
We have proposed a novel system called, Shine, which uses the deep learning-based object detection algorithm for detecting the vehicle.
arXiv Detail & Related papers (2023-02-02T02:46:52Z) - Smart Parking Space Detection under Hazy conditions using Convolutional
Neural Networks: A Novel Approach [0.0]
This paper investigates the use of dehazing networks that improves the performance of parking space occupancy under hazy conditions.
The proposed system is deployable as part of existing smart parking systems where limited number of cameras are used to monitor hundreds of parking spaces.
arXiv Detail & Related papers (2022-01-15T14:15:46Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
The proposed algorithm consists of three parts: an imaginative model for anticipating results before parking, an improved rapid-exploring random tree (RRT) and a path smoothing module.
Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars.
In order to evaluate the algorithm's effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios.
arXiv Detail & Related papers (2021-08-25T18:24:34Z) - Universal Embeddings for Spatio-Temporal Tagging of Self-Driving Logs [72.67604044776662]
We tackle the problem of of-temporal tagging of self-driving scenes from raw sensor data.
Our approach learns a universal embedding for all tags, enabling efficient tagging of many attributes and faster learning of new attributes with limited data.
arXiv Detail & Related papers (2020-11-12T02:18:16Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.