Finding Symmetry Breaking Order Parameters with Euclidean Neural
Networks
- URL: http://arxiv.org/abs/2007.02005v2
- Date: Mon, 26 Oct 2020 20:29:27 GMT
- Title: Finding Symmetry Breaking Order Parameters with Euclidean Neural
Networks
- Authors: Tess E. Smidt, Mario Geiger and Benjamin Kurt Miller
- Abstract summary: We demonstrate that symmetry equivariant neural networks uphold Curie's principle and can be used to articulate many symmetry-relevant scientific questions into simple optimization problems.
We prove these properties mathematically and demonstrate them numerically by training a Euclidean symmetry equivariant neural network to learn symmetry-breaking input to deform a square into a rectangle and to generate octahedra tilting patterns in perovskites.
- Score: 2.735801286587347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curie's principle states that "when effects show certain asymmetry, this
asymmetry must be found in the causes that gave rise to them". We demonstrate
that symmetry equivariant neural networks uphold Curie's principle and can be
used to articulate many symmetry-relevant scientific questions into simple
optimization problems. We prove these properties mathematically and demonstrate
them numerically by training a Euclidean symmetry equivariant neural network to
learn symmetry-breaking input to deform a square into a rectangle and to
generate octahedra tilting patterns in perovskites.
Related papers
- Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks [43.88179780450706]
We investigate the impact of weight space permutation symmetries on variational inference.
We devise a symmetric symmetrization mechanism for constructing permutation invariant variational posteriors.
We show that the symmetrized distribution has a strictly better fit to the true posterior, and that it can be trained using the original ELBO objective.
arXiv Detail & Related papers (2024-08-10T09:06:34Z) - The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
We investigate the impact of neural parameter symmetries by introducing new neural network architectures.
We develop two methods, with some provable guarantees, of modifying standard neural networks to reduce parameter space symmetries.
Our experiments reveal several interesting observations on the empirical impact of parameter symmetries.
arXiv Detail & Related papers (2024-05-30T16:32:31Z) - A Generative Model of Symmetry Transformations [44.87295754993983]
We build a generative model that explicitly aims to capture the data's approximate symmetries.
We empirically demonstrate its ability to capture symmetries under affine and color transformations.
arXiv Detail & Related papers (2024-03-04T11:32:18Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
We propose a loss function that informs the network about Lie point symmetries in the same way that PINN models try to enforce the underlying PDE through a loss function.
Our symmetry loss ensures that the infinitesimal generators of the Lie group conserve the PDE solutions.
Empirical evaluations indicate that the inductive bias introduced by the Lie point symmetries of the PDEs greatly boosts the sample efficiency of PINNs.
arXiv Detail & Related papers (2023-11-07T19:07:16Z) - Symmetry Induces Structure and Constraint of Learning [0.0]
We unveil the importance of the loss function symmetries in affecting, if not deciding, the learning behavior of machine learning models.
Common instances of mirror symmetries in deep learning include rescaling, rotation, and permutation symmetry.
We show that the theoretical framework can explain intriguing phenomena, such as the loss of plasticity and various collapse phenomena in neural networks.
arXiv Detail & Related papers (2023-09-29T02:21:31Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - Machine-learning hidden symmetries [0.0]
We present an automated method for finding hidden symmetries, defined as symmetries that become manifest only in a new coordinate system that must be discovered.
Its core idea is to quantify asymmetry as violation of certain partial differential equations, and to numerically minimize such violation over the space of all invertible transformations, parametrized as invertible neural networks.
arXiv Detail & Related papers (2021-09-20T17:55:02Z) - Noether: The More Things Change, the More Stay the Same [1.14219428942199]
Noether's celebrated theorem states that symmetry leads to conserved quantities.
In the realm of neural networks under gradient descent, model symmetries imply restrictions on the gradient path.
Symmetry can be thought of as one further important tool in understanding the performance of neural networks under gradient descent.
arXiv Detail & Related papers (2021-04-12T14:41:05Z) - Symmetry Breaking in Symmetric Tensor Decomposition [44.181747424363245]
We consider the nonsymmetry problem associated with computing the points rank decomposition of symmetric tensors.
We show that critical points the loss function is detected by standard methods.
arXiv Detail & Related papers (2021-03-10T18:11:22Z) - Latent symmetry induced degeneracies [0.0]
We develop an approach to explain degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian.
As an application, we relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent symmetry group.
arXiv Detail & Related papers (2020-11-26T17:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.