Latent symmetry induced degeneracies
- URL: http://arxiv.org/abs/2011.13404v2
- Date: Tue, 7 Feb 2023 14:35:49 GMT
- Title: Latent symmetry induced degeneracies
- Authors: M. R\"ontgen, M. Pyzh, C. V. Morfonios, N. E. Palaiodimopoulos, F. K.
Diakonos, P. Schmelcher
- Abstract summary: We develop an approach to explain degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian.
As an application, we relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent symmetry group.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Degeneracies in the energy spectra of physical systems are commonly
considered to be either of accidental character or induced by symmetries of the
Hamiltonian. We develop an approach to explain degeneracies by tracing them
back to symmetries of an isospectral effective Hamiltonian derived by subsystem
partitioning. We provide an intuitive interpretation of such latent symmetries
by relating them to corresponding local symmetries in the powers of the
underlying Hamiltonian matrix. As an application, we relate the degeneracies
induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent
symmetry group. It is demonstrated that the rotational symmetries can be broken
in a controlled manner while maintaining the underlying more fundamental latent
symmetry. This opens up the perspective of investigating accidental
degeneracies in terms of latent symmetries.
Related papers
- Robust Symmetry Detection via Riemannian Langevin Dynamics [39.342336146118015]
We propose a novel symmetry detection method that marries classical symmetry detection techniques with recent advances in generative modeling.
Specifically, we apply Langevin dynamics to a symmetry space to enhance robustness against noise.
We provide empirical results on a variety of shapes that suggest our method is not only robust to noise, but can also identify both partial and global symmetries.
arXiv Detail & Related papers (2024-09-18T02:28:20Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Subsystem Symmetry Fractionalization and Foliated Field Theory [0.0]
Topological quantum matter exhibits a range of exotic phenomena when enriched by subdimensional symmetries.
A recently discovered example is a type of subsystem symmetry fractionalization that occurs through a different mechanism to global symmetry fractionalization.
arXiv Detail & Related papers (2024-03-14T04:44:11Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - On discrete symmetries of robotics systems: A group-theoretic and
data-driven analysis [38.92081817503126]
We study discrete morphological symmetries of dynamical systems.
These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology.
We exploit these symmetries using data augmentation and $G$-equivariant neural networks.
arXiv Detail & Related papers (2023-02-21T04:10:16Z) - Entanglement-enabled symmetry-breaking orders [0.0]
A spontaneous symmetry-breaking order is conventionally described by a tensor-product wave-function of some few-body clusters.
We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any tensor-product state.
arXiv Detail & Related papers (2022-07-18T18:00:00Z) - Reflection and Rotation Symmetry Detection via Equivariant Learning [40.61825212385055]
We introduce a group-equivariant convolutional network for symmetry detection, dubbed EquiSym.
We present a new dataset, DENse and DIverse symmetry (DENDI), which mitigates limitations of existing benchmarks for reflection and rotation symmetry detection.
Experiments show that our method achieves the state of the arts in symmetry detection on LDRS and DENDI datasets.
arXiv Detail & Related papers (2022-03-31T04:18:33Z) - Symmetry protected entanglement in random mixed states [0.0]
We study the effect of symmetry on tripartite entanglement properties of typical states in symmetric sectors of Hilbert space.
In particular, we consider Abelian symmetries and derive an explicit expression for the logarithmic entanglement negativity of systems with $mathbbZ_N$ and $U(1)$ symmetry groups.
arXiv Detail & Related papers (2021-11-30T19:00:07Z) - Symmetry-Protected Scattering in Non-Hermitian Linear Systems [0.0]
The symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices.
The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric.
Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.
arXiv Detail & Related papers (2021-01-04T10:30:00Z) - Quantifying Algebraic Asymmetry of Hamiltonian Systems [0.0]
We study the symmetries of a Hamiltonian system by investigating the asymmetry of the Hamiltonian with respect to certain algebras.
The asymmetry of the $q$-deformed integrable spin chain models is calculated.
arXiv Detail & Related papers (2020-01-08T08:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.