Local Grid Rendering Networks for 3D Object Detection in Point Clouds
- URL: http://arxiv.org/abs/2007.02099v1
- Date: Sat, 4 Jul 2020 13:57:43 GMT
- Title: Local Grid Rendering Networks for 3D Object Detection in Point Clouds
- Authors: Jianan Li, Jiashi Feng
- Abstract summary: CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
- Score: 98.02655863113154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of 3D object detection models over point clouds highly
depends on their capability of modeling local geometric patterns. Conventional
point-based models exploit local patterns through a symmetric function (e.g.
max pooling) or based on graphs, which easily leads to loss of fine-grained
geometric structures. Regarding capturing spatial patterns, CNNs are powerful
but it would be computationally costly to directly apply convolutions on point
data after voxelizing the entire point clouds to a dense regular 3D grid. In
this work, we aim to improve performance of point-based models by enhancing
their pattern learning ability through leveraging CNNs while preserving
computational efficiency. We propose a novel and principled Local Grid
Rendering (LGR) operation to render the small neighborhood of a subset of input
points into a low-resolution 3D grid independently, which allows small-size
CNNs to accurately model local patterns and avoids convolutions over a dense
grid to save computation cost. With the LGR operation, we introduce a new
generic backbone called LGR-Net for point cloud feature extraction with simple
design and high efficiency. We validate LGR-Net for 3D object detection on the
challenging ScanNet and SUN RGB-D datasets. It advances state-of-the-art
results significantly by 5.5 and 4.5 mAP, respectively, with only slight
increased computation overhead.
Related papers
- Mini-PointNetPlus: a local feature descriptor in deep learning model for
3d environment perception [7.304195370862869]
We propose a novel local feature descriptor, mini-PointNetPlus, as an alternative for plug-and-play to PointNet.
Our basic idea is to separately project the data points to the individual features considered, each leading to a permutation invariant.
Due to fully utilizing the features by the proposed descriptor, we demonstrate in experiment a considerable performance improvement for 3D perception.
arXiv Detail & Related papers (2023-07-25T07:30:28Z) - MLGCN: An Ultra Efficient Graph Convolution Neural Model For 3D Point
Cloud Analysis [4.947552172739438]
We introduce a novel Multi-level Graph Convolution Neural (MLGCN) model, which uses Graph Neural Networks (GNN) blocks to extract features from 3D point clouds at specific locality levels.
Our approach produces comparable results to those of state-of-the-art models while requiring up to a thousand times fewer floating-point operations (FLOPs) and having significantly reduced storage requirements.
arXiv Detail & Related papers (2023-03-31T00:15:22Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images.
Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input.
We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-08-09T10:17:27Z) - ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition [1.3999481573773074]
We propose Attention Based Decomposition Network (ABD-Net) for point cloud decomposition.
We show improved performance of 3D object classification using attention features based on primitive shapes in point clouds.
arXiv Detail & Related papers (2021-07-09T08:39:30Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.