ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition
- URL: http://arxiv.org/abs/2108.04221v1
- Date: Fri, 9 Jul 2021 08:39:30 GMT
- Title: ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition
- Authors: Siddharth Katageri, Shashidhar V Kudari, Akshaykumar Gunari, Ramesh
Ashok Tabib, Uma Mudenagudi
- Abstract summary: We propose Attention Based Decomposition Network (ABD-Net) for point cloud decomposition.
We show improved performance of 3D object classification using attention features based on primitive shapes in point clouds.
- Score: 1.3999481573773074
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we propose Attention Based Decomposition Network (ABD-Net),
for point cloud decomposition into basic geometric shapes namely, plane,
sphere, cone and cylinder. We show improved performance of 3D object
classification using attention features based on primitive shapes in point
clouds. Point clouds, being the simple and compact representation of 3D objects
have gained increasing popularity. They demand robust methods for feature
extraction due to unorderness in point sets. In ABD-Net the proposed Local
Proximity Encapsulator captures the local geometric variations along with
spatial encoding around each point from the input point sets. The encapsulated
local features are further passed to proposed Attention Feature Encoder to
learn basic shapes in point cloud. Attention Feature Encoder models geometric
relationship between the neighborhoods of all the points resulting in capturing
global point cloud information. We demonstrate the results of our proposed
ABD-Net on ANSI mechanical component and ModelNet40 datasets. We also
demonstrate the effectiveness of ABD-Net over the acquired attention features
by improving the performance of 3D object classification on ModelNet40
benchmark dataset and compare them with state-of-the-art techniques.
Related papers
- Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Object Detection in 3D Point Clouds via Local Correlation-Aware Point
Embedding [0.0]
We present an improved approach for 3D object detection in point cloud data based on the Frustum PointNet (F-PointNet)
Compared to the original F-PointNet, our newly proposed method considers the point neighborhood when computing point features.
arXiv Detail & Related papers (2023-01-11T18:14:47Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
We introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings.
Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset.
arXiv Detail & Related papers (2021-04-07T23:13:56Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
We propose a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds.
We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets.
arXiv Detail & Related papers (2021-01-28T13:27:55Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
arXiv Detail & Related papers (2020-04-06T16:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.