論文の概要: Sentiment Analysis on Social Media Content
- arxiv url: http://arxiv.org/abs/2007.02144v2
- Date: Mon, 13 Jul 2020 02:42:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 13:21:13.725962
- Title: Sentiment Analysis on Social Media Content
- Title(参考訳): ソーシャルメディアコンテンツに対する感性分析
- Authors: Antony Samuels, John Mcgonical
- Abstract要約: 本研究の目的は,Twitterから収集した実データの感情分析を行うモデルを提案することである。
Twitterのデータは非常に非構造化されており、分析が困難である。
提案手法は,教師付き機械学習アルゴリズムと教師なし機械学習アルゴリズムの併用により,この分野の先行研究とは異なる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Nowadays, people from all around the world use social media sites to share
information. Twitter for example is a platform in which users send, read posts
known as tweets and interact with different communities. Users share their
daily lives, post their opinions on everything such as brands and places.
Companies can benefit from this massive platform by collecting data related to
opinions on them. The aim of this paper is to present a model that can perform
sentiment analysis of real data collected from Twitter. Data in Twitter is
highly unstructured which makes it difficult to analyze. However, our proposed
model is different from prior work in this field because it combined the use of
supervised and unsupervised machine learning algorithms. The process of
performing sentiment analysis as follows: Tweet extracted directly from Twitter
API, then cleaning and discovery of data performed. After that the data were
fed into several models for the purpose of training. Each tweet extracted
classified based on its sentiment whether it is a positive, negative or
neutral. Data were collected on two subjects McDonalds and KFC to show which
restaurant has more popularity. Different machine learning algorithms were
used. The result from these models were tested using various testing metrics
like cross validation and f-score. Moreover, our model demonstrates strong
performance on mining texts extracted directly from Twitter.
- Abstract(参考訳): 現在、世界中の人々がソーシャルメディアサイトを使って情報を共有している。
例えばTwitterは、ユーザーがツイートとして知られる投稿を送受信し、異なるコミュニティとやりとりするプラットフォームだ。
ユーザーは日々の生活を共有し、ブランドや場所などあらゆるものに意見を投稿する。
企業は、意見に関するデータを収集することで、この巨大なプラットフォームから恩恵を受けることができる。
本研究の目的は,Twitterから収集した実データの感情分析を行うモデルを提案することである。
Twitterのデータは非常に非構造化されており、分析が難しい。
しかし,本提案手法は,教師付き機械学習アルゴリズムと教師なし機械学習アルゴリズムの併用により,この分野の先行研究とは異なる。
感情分析を行うプロセスは以下のとおりである。 twitter apiから直接ツイートを抽出し、その後、実行されたデータのクリーニングと発見を行う。
その後、データはトレーニングのために複数のモデルに入力された。
それぞれのツイートは、肯定的か否定的か中立かという感情に基づいて分類された。
マクドナルドとKFCは、どのレストランが人気があるかを示すために、データを収集した。
異なる機械学習アルゴリズムが使われた。
これらのモデルの結果は、cross validationやf-scoreなど、さまざまなテストメトリクスを使用してテストされた。
さらに,本モデルでは,Twitterから直接抽出したテキストのマイニングに強い性能を示す。
関連論文リスト
- Context-Based Tweet Engagement Prediction [0.0]
この論文は、ツイートのエンゲージメントの可能性を予測するために、コンテキスト単独がいかにうまく使われるかを調査する。
私たちはTU WienのLittle Big Data ClusterにSparkエンジンを使用して、スケーラブルなデータ前処理、機能エンジニアリング、機能選択、マシンラーニングパイプラインを作成しました。
また, 予測アルゴリズム, トレーニングデータセットサイズ, トレーニングデータセットサンプリング手法, 特徴選択などの因子が, 結果に有意な影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-09-28T08:36:57Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - SOK: Seeing and Believing: Evaluating the Trustworthiness of Twitter
Users [4.609388510200741]
現在、どのニュースやユーザーが信頼できるか、どれがそうでないかを自動で判断する方法はない。
本研究では、Twitter上で5万人の政治家の行動を分析するモデルを作成しました。
政治Twitterのユーザを、ランダムな森林、多層パーセプトロン、サポートベクターマシンを使って、信頼あるいは信頼できないと分類した。
論文 参考訳(メタデータ) (2021-07-16T17:39:32Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Towards A Sentiment Analyzer for Low-Resource Languages [0.0]
本研究は,当時盛んに議論されてきた特定のトレンドトピックに対して,ユーザの感情を分析することを目的としている。
2019年のインドネシア大統領選挙で話題になったハッシュタグのtextit#kpujangancurangを使っています。
本研究は,ラピッドマイニングツールを用いて,Twitterデータを生成し,Nieve Bayes,K-Nearest Neighbor,Decision Tree,Multi-Layer Perceptronの分類手法を比較し,Twitterデータの感情を分類する。
論文 参考訳(メタデータ) (2020-11-12T13:50:00Z) - TweetBERT: A Pretrained Language Representation Model for Twitter Text
Analysis [0.0]
我々は、何百万ものツイートで事前訓練されたドメイン固有言語プレゼンテーションモデルである2つのTweetBERTモデルを紹介した。
TweetBERTモデルは、Twitterのテキストマイニングタスクにおける従来のBERTモデルよりも、各Twitterデータセットで7%以上優れています。
論文 参考訳(メタデータ) (2020-10-17T00:45:02Z) - TIMME: Twitter Ideology-detection via Multi-task Multi-relational
Embedding [26.074367752142198]
我々は、人々のイデオロギーや政治的傾向を予測する問題を解決することを目的としている。
我々は、Twitterデータを用いてそれを推定し、分類問題として定式化する。
論文 参考訳(メタデータ) (2020-06-02T00:00:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。