Unsupervised Paraphrasing via Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2007.02244v1
- Date: Sun, 5 Jul 2020 05:54:02 GMT
- Title: Unsupervised Paraphrasing via Deep Reinforcement Learning
- Authors: A. B. Siddique, Samet Oymak, Vagelis Hristidis
- Abstract summary: Progressive Unsupervised Paraphrasing (PUP) is an unsupervised paraphrase generation method based on deep reinforcement learning (DRL)
PUP uses a variational autoencoder to generate a seed paraphrase that warm-starts the DRL model.
Then, PUP progressively tunes the seed paraphrase guided by our novel reward function which combines semantic adequacy, language fluency, and expression diversity measures.
- Score: 33.00732998036464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Paraphrasing is expressing the meaning of an input sentence in different
wording while maintaining fluency (i.e., grammatical and syntactical
correctness). Most existing work on paraphrasing use supervised models that are
limited to specific domains (e.g., image captions). Such models can neither be
straightforwardly transferred to other domains nor generalize well, and
creating labeled training data for new domains is expensive and laborious. The
need for paraphrasing across different domains and the scarcity of labeled
training data in many such domains call for exploring unsupervised paraphrase
generation methods. We propose Progressive Unsupervised Paraphrasing (PUP): a
novel unsupervised paraphrase generation method based on deep reinforcement
learning (DRL). PUP uses a variational autoencoder (trained using a
non-parallel corpus) to generate a seed paraphrase that warm-starts the DRL
model. Then, PUP progressively tunes the seed paraphrase guided by our novel
reward function which combines semantic adequacy, language fluency, and
expression diversity measures to quantify the quality of the generated
paraphrases in each iteration without needing parallel sentences. Our extensive
experimental evaluation shows that PUP outperforms unsupervised
state-of-the-art paraphrasing techniques in terms of both automatic metrics and
user studies on four real datasets. We also show that PUP outperforms
domain-adapted supervised algorithms on several datasets. Our evaluation also
shows that PUP achieves a great trade-off between semantic similarity and
diversity of expression.
Related papers
- Unsupervised Domain Adaptation for Sparse Retrieval by Filling
Vocabulary and Word Frequency Gaps [12.573927420408365]
IR models using a pretrained language model significantly outperform lexical approaches like BM25.
This paper proposes an unsupervised domain adaptation method by filling vocabulary and word-frequency gaps.
We show that our method outperforms the present stateof-the-art domain adaptation method.
arXiv Detail & Related papers (2022-11-08T03:58:26Z) - Unsupervised Syntactically Controlled Paraphrase Generation with
Abstract Meaning Representations [59.10748929158525]
Abstract Representations (AMR) can greatly improve the performance of unsupervised syntactically controlled paraphrase generation.
Our proposed model, AMR-enhanced Paraphrase Generator (AMRPG), encodes the AMR graph and the constituency parses the input sentence into two disentangled semantic and syntactic embeddings.
Experiments show that AMRPG generates more accurate syntactically controlled paraphrases, both quantitatively and qualitatively, compared to the existing unsupervised approaches.
arXiv Detail & Related papers (2022-11-02T04:58:38Z) - Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation [81.65399115750054]
We propose a novel approach to generate high-quality paraphrases with weak supervision data.
Specifically, we tackle the weakly-supervised paraphrase generation problem by:.
obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion.
We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
arXiv Detail & Related papers (2021-09-25T23:31:13Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - A Correspondence Variational Autoencoder for Unsupervised Acoustic Word
Embeddings [50.524054820564395]
We propose a new unsupervised model for mapping a variable-duration speech segment to a fixed-dimensional representation.
The resulting acoustic word embeddings can form the basis of search, discovery, and indexing systems for low- and zero-resource languages.
arXiv Detail & Related papers (2020-12-03T19:24:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Coupling Distant Annotation and Adversarial Training for Cross-Domain
Chinese Word Segmentation [40.27961925319402]
This paper proposes to couple distant annotation and adversarial training for cross-domain Chinese word segmentation.
For distant annotation, we design an automatic distant annotation mechanism that does not need any supervision or pre-defined dictionaries from the target domain.
For adversarial training, we develop a sentence-level training procedure to perform noise reduction and maximum utilization of the source domain information.
arXiv Detail & Related papers (2020-07-16T08:54:17Z) - Defense against Adversarial Attacks in NLP via Dirichlet Neighborhood
Ensemble [163.3333439344695]
Dirichlet Neighborhood Ensemble (DNE) is a randomized smoothing method for training a robust model to defense substitution-based attacks.
DNE forms virtual sentences by sampling embedding vectors for each word in an input sentence from a convex hull spanned by the word and its synonyms, and it augments them with the training data.
We demonstrate through extensive experimentation that our method consistently outperforms recently proposed defense methods by a significant margin across different network architectures and multiple data sets.
arXiv Detail & Related papers (2020-06-20T18:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.