Coupling Distant Annotation and Adversarial Training for Cross-Domain
Chinese Word Segmentation
- URL: http://arxiv.org/abs/2007.08186v2
- Date: Wed, 2 Sep 2020 07:51:48 GMT
- Title: Coupling Distant Annotation and Adversarial Training for Cross-Domain
Chinese Word Segmentation
- Authors: Ning Ding, Dingkun Long, Guangwei Xu, Muhua Zhu, Pengjun Xie, Xiaobin
Wang, Hai-Tao Zheng
- Abstract summary: This paper proposes to couple distant annotation and adversarial training for cross-domain Chinese word segmentation.
For distant annotation, we design an automatic distant annotation mechanism that does not need any supervision or pre-defined dictionaries from the target domain.
For adversarial training, we develop a sentence-level training procedure to perform noise reduction and maximum utilization of the source domain information.
- Score: 40.27961925319402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully supervised neural approaches have achieved significant progress in the
task of Chinese word segmentation (CWS). Nevertheless, the performance of
supervised models tends to drop dramatically when they are applied to
out-of-domain data. Performance degradation is caused by the distribution gap
across domains and the out of vocabulary (OOV) problem. In order to
simultaneously alleviate these two issues, this paper proposes to couple
distant annotation and adversarial training for cross-domain CWS. For distant
annotation, we rethink the essence of "Chinese words" and design an automatic
distant annotation mechanism that does not need any supervision or pre-defined
dictionaries from the target domain. The approach could effectively explore
domain-specific words and distantly annotate the raw texts for the target
domain. For adversarial training, we develop a sentence-level training
procedure to perform noise reduction and maximum utilization of the source
domain information. Experiments on multiple real-world datasets across various
domains show the superiority and robustness of our model, significantly
outperforming previous state-of-the-art cross-domain CWS methods.
Related papers
- Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
The task of analyzing the internal rhetorical structure of texts is a challenging problem in natural language processing.
Despite the recent advances in neural models, the lack of large-scale, high-quality corpora for training remains a major obstacle.
Recent studies have attempted to overcome this limitation by using distant supervision.
arXiv Detail & Related papers (2023-05-23T07:13:51Z) - Unsupervised Domain Adaptation for Sparse Retrieval by Filling
Vocabulary and Word Frequency Gaps [12.573927420408365]
IR models using a pretrained language model significantly outperform lexical approaches like BM25.
This paper proposes an unsupervised domain adaptation method by filling vocabulary and word-frequency gaps.
We show that our method outperforms the present stateof-the-art domain adaptation method.
arXiv Detail & Related papers (2022-11-08T03:58:26Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
We propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains.
Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-07-12T17:57:46Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
arXiv Detail & Related papers (2020-11-17T14:50:55Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
This paper presents an innovative local contextual-relation consistent domain adaptation technique.
It aims to achieve local-level consistencies during the global-level alignment.
Experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-07-05T19:00:46Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
We propose a model referred Contradistinguisher that learns contrastive features and whose objective is to jointly learn to contradistinguish the unlabeled target domain in an unsupervised way.
We achieve the state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and multi-source settings.
arXiv Detail & Related papers (2020-05-25T19:54:38Z) - Vocabulary Adaptation for Distant Domain Adaptation in Neural Machine
Translation [14.390932594872233]
Domain adaptation between distant domains cannot be performed effectively due to mismatches in vocabulary.
We propose vocabulary adaptation, a simple method for effective fine-tuning.
Our method improves the performance of conventional fine-tuning by 3.86 and 3.28 BLEU points in En-Ja and De-En translation.
arXiv Detail & Related papers (2020-04-30T14:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.