Detecting Community Depression Dynamics Due to COVID-19 Pandemic in
Australia
- URL: http://arxiv.org/abs/2007.02325v1
- Date: Sun, 5 Jul 2020 12:55:34 GMT
- Title: Detecting Community Depression Dynamics Due to COVID-19 Pandemic in
Australia
- Authors: Jianlong Zhou, Hamad Zogan, Shuiqiao Yang, Shoaib Jameel, Guandong Xu,
Fang Chen
- Abstract summary: This paper studies community depression dynamics due to COVID-19 pandemic through user-generated content on Twitter.
We study the problem using recently scraped tweets from Twitter users emanating from the state of New South Wales in Australia.
Our novel classification model is capable of extracting depression polarities which may be affected by COVID-19.
- Score: 17.856486813652932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent COVID-19 pandemic has caused unprecedented impact across the
globe. We have also witnessed millions of people with increased mental health
issues, such as depression, stress, worry, fear, disgust, sadness, and anxiety,
which have become one of the major public health concerns during this severe
health crisis. For instance, depression is one of the most common mental health
issues according to the findings made by the World Health Organisation (WHO).
Depression can cause serious emotional, behavioural and physical health
problems with significant consequences, both personal and social costs
included. This paper studies community depression dynamics due to COVID-19
pandemic through user-generated content on Twitter. A new approach based on
multi-modal features from tweets and Term Frequency-Inverse Document Frequency
(TF-IDF) is proposed to build depression classification models. Multi-modal
features capture depression cues from emotion, topic and domain-specific
perspectives. We study the problem using recently scraped tweets from Twitter
users emanating from the state of New South Wales in Australia. Our novel
classification model is capable of extracting depression polarities which may
be affected by COVID-19 and related events during the COVID-19 period. The
results found that people became more depressed after the outbreak of COVID-19.
The measures implemented by the government such as the state lockdown also
increased depression levels. Further analysis in the Local Government Area
(LGA) level found that the community depression level was different across
different LGAs. Such granular level analysis of depression dynamics not only
can help authorities such as governmental departments to take corresponding
actions more objectively in specific regions if necessary but also allows users
to perceive the dynamics of depression over the time.
Related papers
- On the State of NLP Approaches to Modeling Depression in Social Media: A Post-COVID-19 Outlook [21.978924582262263]
Depression is the most widely studied mental health condition.
The COVID-19 global pandemic has had a great impact on mental health worldwide.
We present a survey on natural language processing (NLP) approaches to modeling depression in social media.
arXiv Detail & Related papers (2024-10-11T13:20:54Z) - Predicting Depression and Anxiety: A Multi-Layer Perceptron for
Analyzing the Mental Health Impact of COVID-19 [1.9809980686152868]
We introduce a multi-layer perceptron (MLP) called the COVID-19 Depression and Anxiety Predictor (CoDAP) to predict mental health trends during the COVID-19 pandemic.
Our method utilizes a comprehensive dataset, which tracked mental health symptoms weekly over ten weeks during the initial COVID-19 wave (April to June 2020) in a diverse cohort of U.S. adults.
This model not only predicts patterns of anxiety and depression during the pandemic but also unveils key insights into the interplay of demographic factors, behavioral changes, and social determinants of mental health.
arXiv Detail & Related papers (2024-03-09T22:49:04Z) - MASON-NLP at eRisk 2023: Deep Learning-Based Detection of Depression
Symptoms from Social Media Texts [0.0]
Depression is a mental health disorder that has a profound impact on people's lives.
Recent research suggests that signs of depression can be detected in the way individuals communicate.
Social media posts are a rich and convenient text source that we may examine for depressive symptoms.
arXiv Detail & Related papers (2023-10-17T02:34:34Z) - Exploring Social Media for Early Detection of Depression in COVID-19
Patients [44.76299288962596]
Detection and intervention at an early stage can reduce the risk of depression in COVID-19 patients.
We managed a dataset of COVID-19 patients that contains information about their social media activity both before and after infection.
We conducted an extensive analysis of this dataset to investigate the characteristic of COVID-19 patients with a higher risk of depression.
arXiv Detail & Related papers (2023-02-23T14:13:52Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z) - Depressed individuals express more distorted thinking on social media [0.0]
Depression is a leading cause of disability worldwide, but is often under-diagnosed and under-treated.
Here, we show that individuals with a self-reported diagnosis of depression express higher levels of distorted thinking than a random sample.
Some types of distorted thinking were found to be more than twice as prevalent in our depressed cohort, in particular Personalizing and Emotional Reasoning.
arXiv Detail & Related papers (2020-02-07T14:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.