Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm
- URL: http://arxiv.org/abs/2007.02363v1
- Date: Sun, 5 Jul 2020 15:23:33 GMT
- Title: Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm
- Authors: Wei Lian, WangMeng Zuo, Lei Zhang
- Abstract summary: We propose a robust method to align point sets where there is no prior information about the value of the transformation.
Our algorithm does not need regularization on transformation, and thus can handle the situation where there is no prior information about the values of the transformations.
Experimental results demonstrate the better robustness of the proposed method over state-of-the-art algorithms.
- Score: 80.15123031136564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning partially overlapping point sets where there is no prior information
about the value of the transformation is a challenging problem in computer
vision. To achieve this goal, we first reduce the objective of the robust point
matching algorithm to a function of a low dimensional variable. The resulting
function, however, is only concave over a finite region including the feasible
region. To cope with this issue, we employ the inner approximation optimization
algorithm which only operates within the region where the objective function is
concave. Our algorithm does not need regularization on transformation, and thus
can handle the situation where there is no prior information about the values
of the transformations. Our method is also $\epsilon-$globally optimal and thus
is guaranteed to be robust. Moreover, its most computationally expensive
subroutine is a linear assignment problem which can be efficiently solved.
Experimental results demonstrate the better robustness of the proposed method
over state-of-the-art algorithms. Our method is also efficient when the number
of transformation parameters is small.
Related papers
- Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - A framework for bilevel optimization that enables stochastic and global
variance reduction algorithms [17.12280360174073]
Bilevel optimization is a problem of minimizing a value function which involves the arg-minimum of another function.
We introduce a novel framework, in which the solution of the inner problem, the solution of the linear system, and the main variable evolve at the same time.
We demonstrate that SABA, an adaptation of the celebrated SAGA algorithm in our framework, has $O(frac1T)$ convergence rate, and that it achieves linear convergence under Polyak-Lojasciewicz assumption.
arXiv Detail & Related papers (2022-01-31T18:17:25Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Accelerated Algorithms for Convex and Non-Convex Optimization on
Manifolds [9.632674803757475]
We propose a scheme for solving convex and non- optimization problems on distance.
Our proposed algorithm adapts to the level of complexity in the objective function.
arXiv Detail & Related papers (2020-10-18T02:48:22Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
We consider the task of decentralized minimization of the sum of smooth strongly convex functions stored across the nodes of a network.
We propose two new algorithms for this decentralized optimization problem and equip them with complexity guarantees.
arXiv Detail & Related papers (2020-06-21T11:23:20Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.