Detail Preserved Point Cloud Completion via Separated Feature
Aggregation
- URL: http://arxiv.org/abs/2007.02374v1
- Date: Sun, 5 Jul 2020 16:11:55 GMT
- Title: Detail Preserved Point Cloud Completion via Separated Feature
Aggregation
- Authors: Wenxiao Zhang, Qingan Yan and Chunxia Xiao
- Abstract summary: Point cloud shape completion is a challenging problem in 3D vision and robotics.
We propose two different feature aggregation strategies, named global & local feature aggregation(GLFA) and residual feature aggregation(RFA)
Our proposed network outperforms current state-of-the art methods especially on detail preservation.
- Score: 26.566021924980706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud shape completion is a challenging problem in 3D vision and
robotics. Existing learning-based frameworks leverage encoder-decoder
architectures to recover the complete shape from a highly encoded global
feature vector. Though the global feature can approximately represent the
overall shape of 3D objects, it would lead to the loss of shape details during
the completion process. In this work, instead of using a global feature to
recover the whole complete surface, we explore the functionality of multi-level
features and aggregate different features to represent the known part and the
missing part separately. We propose two different feature aggregation
strategies, named global \& local feature aggregation(GLFA) and residual
feature aggregation(RFA), to express the two kinds of features and reconstruct
coordinates from their combination. In addition, we also design a refinement
component to prevent the generated point cloud from non-uniform distribution
and outliers. Extensive experiments have been conducted on the ShapeNet
dataset. Qualitative and quantitative evaluations demonstrate that our proposed
network outperforms current state-of-the art methods especially on detail
preservation.
Related papers
- Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
We propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map.
A 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud.
A point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output.
arXiv Detail & Related papers (2022-02-17T10:59:40Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Variational Relational Point Completion Network [41.98957577398084]
Existing point cloud completion methods generate global shape skeletons and lack fine local details.
This paper proposes Variational point Completion network (VRCNet) with two appealing properties.
VRCNet shows greatizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2021-04-20T17:53:40Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
We introduce a two-branch network for shape completion.
The first branch is a cascaded shape completion sub-network to synthesize complete objects.
The second branch is an auto-encoder to reconstruct the original partial input.
arXiv Detail & Related papers (2020-10-17T04:56:22Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.