A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI
- URL: http://arxiv.org/abs/2007.02606v3
- Date: Mon, 13 Jul 2020 13:10:27 GMT
- Title: A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI
- Authors: Rhydian Windsor, Amir Jamaludin, Timor Kadir, Andrew Zisserman
- Abstract summary: We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
- Score: 70.04389979779195
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a novel convolutional method for the detection and identification
of vertebrae in whole spine MRIs. This involves using a learnt vector field to
group detected vertebrae corners together into individual vertebral bodies and
convolutional image-to-image translation followed by beam search to label
vertebral levels in a self-consistent manner. The method can be applied without
modification to lumbar, cervical and thoracic-only scans across a range of
different MR sequences. The resulting system achieves 98.1% detection rate and
96.5% identification rate on a challenging clinical dataset of whole spine
scans and matches or exceeds the performance of previous systems on lumbar-only
scans. Finally, we demonstrate the clinical applicability of this method, using
it for automated scoliosis detection in both lumbar and whole spine MR scans.
Related papers
- SpineFM: Leveraging Foundation Models for Automatic Spine X-ray Segmentation [0.0]
This paper introduces SpineFM, a novel pipeline that achieves state-of-the-art performance in the automatic segmentation and identification of vertebral bodies.
We achieved outstanding results on two publicly available spine X-Ray datasets, with successful identification of 97.8% and 99.6% of annotated vertebrae.
arXiv Detail & Related papers (2024-11-01T02:51:21Z) - Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet [2.8730926763860687]
We propose a modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine.
Our method achieves an impressive accuracy of 99.5% by incorporating novel masking logic.
arXiv Detail & Related papers (2024-04-28T19:35:00Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae.
It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression.
We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published model.
arXiv Detail & Related papers (2022-06-27T10:31:03Z) - SpineNetV2: Automated Detection, Labelling and Radiological Grading Of
Clinical MR Scans [70.04389979779195]
SpineNetV2 is an automated tool which detects and labels vertebral bodies in clinical spinal magnetic resonance (MR) scans.
It also performs radiological grading of lumbar intervertebral discs in T2-weighted scans for a range of common degenerative changes.
arXiv Detail & Related papers (2022-05-03T15:05:58Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
We propose a stacked hourglass network with multi-level attention mechanism to jointly learn intervertebral disc position and their skeleton structure.
The proposed deep learning model takes into account the strength of semantic segmentation and pose estimation technique to handle the missing area and false positive detection.
arXiv Detail & Related papers (2021-08-14T14:53:27Z) - Bipartite Distance for Shape-Aware Landmark Detection in Spinal X-Ray
Images [17.8260780895433]
Scoliosis is a congenital disease that causes lateral curvature in the spine.
Reliability can be improved through the automatic detection and localization of spinal landmarks.
We propose a novel loss based on a bipartite distance (BPD) measure, and show that it consistently improves landmark detection performance.
arXiv Detail & Related papers (2020-05-28T22:34:24Z) - Analysis of Scoliosis From Spinal X-Ray Images [17.8260780895433]
Measurement of scoliosis requires labeling and identification of vertebrae in the spine.
Scoliosis is a congenital disease in which the spine is deformed from its normal shape.
We propose an end-to-end segmentation model that provides a fully automatic and reliable segmentation of the vertebrae associated with scoliosis measurement.
arXiv Detail & Related papers (2020-04-15T05:36:28Z) - Force-Ultrasound Fusion: Bringing Spine Robotic-US to the Next "Level" [46.13840565802387]
A robotic arm automatically scans the volunteer's back along the spine by using force-ultrasound data to locate vertebral levels.
The occurrences of vertebral levels are visible on the force trace as peaks, which are enhanced by properly controlling the force applied by the robot on the patient back.
The fusion method is able to correctly classify 100% of the vertebral levels in the test set, while pure image and pure force-based method could only classify 80% and 90% vertebrae, respectively.
arXiv Detail & Related papers (2020-02-26T10:49:53Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.