Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet
- URL: http://arxiv.org/abs/2404.18291v1
- Date: Sun, 28 Apr 2024 19:35:00 GMT
- Title: Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet
- Authors: Rikathi Pal, Priya Saha, Somoballi Ghoshal, Amlan Chakrabarti, Susmita Sur-Kolay,
- Abstract summary: We propose a modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine.
Our method achieves an impressive accuracy of 99.5% by incorporating novel masking logic.
- Score: 2.8730926763860687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation and labeling of vertebrae in MRI images of the spine are critical for the diagnosis of illnesses and abnormalities. These steps are indispensable as MRI technology provides detailed information about the tissue structure of the spine. Both supervised and unsupervised segmentation methods exist, yet acquiring sufficient data remains challenging for achieving high accuracy. In this study, we propose an enhancing approach based on modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine. Our method achieves an impressive accuracy of 99.5\% by incorporating novel masking logic, thus significantly advancing the state-of-the-art in vertebral segmentation and labeling. This contributes to more precise and reliable diagnosis and treatment planning.
Related papers
- Pioneering Precision in Lumbar Spine MRI Segmentation with Advanced Deep Learning and Data Enhancement [0.0]
This study focuses on addressing key challenges such as class imbalance and data preprocessing.
MRI scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs)
The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer.
arXiv Detail & Related papers (2024-09-09T19:22:17Z) - SpineMamba: Enhancing 3D Spinal Segmentation in Clinical Imaging through Residual Visual Mamba Layers and Shape Priors [10.431439196002842]
We introduce a residual visual Mamba layer to model the deep semantic features and long-range spatial dependencies of 3D spinal data.
We also propose a novel spinal shape prior module that captures specific anatomical information of the spine from medical images.
SpineMamba achieves superior segmentation performance, exceeding it by up to 2 percentage points.
arXiv Detail & Related papers (2024-08-28T15:59:40Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Simulating Realistic MRI variations to Improve Deep Learning model and
visual explanations using GradCAM [0.0]
We use a modified HighRes3DNet model for solving brain MRI volumetric landmark detection problem.
Grad-CAM produces a coarse localization map highlighting the regions the model is focusing.
arXiv Detail & Related papers (2021-11-01T11:14:23Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
We propose a stacked hourglass network with multi-level attention mechanism to jointly learn intervertebral disc position and their skeleton structure.
The proposed deep learning model takes into account the strength of semantic segmentation and pose estimation technique to handle the missing area and false positive detection.
arXiv Detail & Related papers (2021-08-14T14:53:27Z) - Automatic Vertebra Localization and Identification in CT by Spine
Rectification and Anatomically-constrained Optimization [23.84364494308767]
This paper proposes a robust and accurate method that exploits the anatomical knowledge of the spine to facilitate vertebra localization and identification.
A key point localization model is trained to produce activation maps of vertebra centers.
They are then re-sampled along the spine centerline to produce spine-rectified activation maps, which are further aggregated into 1-D activation signals.
An anatomically-constrained optimization module is introduced to jointly search for the optimal vertebra centers under a soft constraint that regulates the distance between vertebrae and a hard constraint on the consecutive vertebra indices.
arXiv Detail & Related papers (2020-12-14T21:26:48Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.