On the Influence of Ageing on Face Morph Attacks: Vulnerability and
Detection
- URL: http://arxiv.org/abs/2007.02684v2
- Date: Sat, 19 Sep 2020 16:56:29 GMT
- Title: On the Influence of Ageing on Face Morph Attacks: Vulnerability and
Detection
- Authors: Sushma Venkatesh, Kiran Raja, Raghavendra Ramachandra, Christoph Busch
- Abstract summary: Face Recognition Systems (FRS) are widely deployed in border control applications.
The face morphing process uses the images from multiple data subjects and performs an image blending operation to generate a morphed image of high quality.
The generated morphed image exhibits similar visual characteristics corresponding to the biometric characteristics of the data subjects that contributed to the composite image.
- Score: 12.936155415524937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face morphing attacks have raised critical concerns as they demonstrate a new
vulnerability of Face Recognition Systems (FRS), which are widely deployed in
border control applications. The face morphing process uses the images from
multiple data subjects and performs an image blending operation to generate a
morphed image of high quality. The generated morphed image exhibits similar
visual characteristics corresponding to the biometric characteristics of the
data subjects that contributed to the composite image and thus making it
difficult for both humans and FRS, to detect such attacks. In this paper, we
report a systematic investigation on the vulnerability of the
Commercial-Off-The-Shelf (COTS) FRS when morphed images under the influence of
ageing are presented. To this extent, we have introduced a new morphed face
dataset with ageing derived from the publicly available MORPH II face dataset,
which we refer to as MorphAge dataset. The dataset has two bins based on age
intervals, the first bin - MorphAge-I dataset has 1002 unique data subjects
with the age variation of 1 year to 2 years while the MorphAge-II dataset
consists of 516 data subjects whose age intervals are from 2 years to 5 years.
To effectively evaluate the vulnerability for morphing attacks, we also
introduce a new evaluation metric, namely the Fully Mated Morphed Presentation
Match Rate (FMMPMR), to quantify the vulnerability effectively in a realistic
scenario. Extensive experiments are carried out by using two different COTS FRS
(COTS I - Cognitec and COTS II - Neurotechnology) to quantify the vulnerability
with ageing. Further, we also evaluate five different Morph Attack Detection
(MAD) techniques to benchmark their detection performance with ageing.
Related papers
- The Impact of Print-Scanning in Heterogeneous Morph Evaluation Scenarios [1.9035583634286277]
We investigate the impact of print-scanning on morphing attack detection through a series of evaluations.
Experiments show that we can increase the Mated Morph Presentation Match Rate (MMPMR) by up to 8.48%.
When a Single-image Morphing Attack Detection (S-MAD) algorithm is not trained to detect print-scanned morphs the Morphing Attack Classification Error Rate (MACER) can increase by up to 96.12%.
arXiv Detail & Related papers (2024-04-09T18:23:34Z) - DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFace is the first diffusion-based face forgery dataset.
It covers various forgery categories, including unconditional and Text Guide facial image generation, Img2Img, Inpaint, and Diffusion-based facial exchange algorithms.
It provides essential metadata and a real-world internet-sourced forgery facial image dataset for evaluation.
arXiv Detail & Related papers (2024-03-27T11:32:44Z) - Face Morphing Attack Detection with Denoising Diffusion Probabilistic
Models [0.0]
Morphed face images can be used to impersonate someone's identity for various malicious purposes.
Existing MAD techniques rely on discriminative models that learn from examples of bona fide and morphed images.
We propose a novel, diffusion-based MAD method that learns only from the characteristics of bona fide images.
arXiv Detail & Related papers (2023-06-27T18:19:45Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - Leveraging Diffusion For Strong and High Quality Face Morphing Attacks [2.0795007613453445]
Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the biometric qualities from two different identities.
We present a novel morphing attack that uses a Diffusion-based architecture to improve the visual fidelity of the image.
arXiv Detail & Related papers (2023-01-10T21:50:26Z) - Surveillance Face Anti-spoofing [81.50018853811895]
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks.
We propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality.
A large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
arXiv Detail & Related papers (2023-01-03T07:09:57Z) - Face Morphing Attacks and Face Image Quality: The Effect of Morphing and
the Unsupervised Attack Detection by Quality [6.889667606945215]
We theorize that the morphing processes might have an effect on both, the perceptual image quality and the image utility in face recognition.
This work provides an extensive analysis of the effect of morphing on face image quality, including both general image quality measures and face image utility measures.
Our study goes further to build on this effect and investigate the possibility of performing unsupervised morphing attack detection (MAD) based on quality scores.
arXiv Detail & Related papers (2022-08-11T15:12:50Z) - DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition [85.94331736287765]
We formulate HFR as a dual generation problem, and tackle it via a novel Dual Variational Generation (DVG-Face) framework.
We integrate abundant identity information of large-scale visible data into the joint distribution.
Massive new diverse paired heterogeneous images with the same identity can be generated from noises.
arXiv Detail & Related papers (2020-09-20T09:48:24Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
Current state-of-the-art models for automatic Facial Expression Recognition (FER) are based on very deep neural networks that are effective but rather expensive to train.
We formalize the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks.
We demonstrate how our model achieves a comparable, if not better, performance to the current state-of-the-art in FER.
arXiv Detail & Related papers (2020-09-15T09:25:37Z) - MIPGAN -- Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN [22.220940043294334]
We present a new approach for generating strong attacks using an Identity Prior Driven Generative Adversarial Network.
The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor.
We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System.
arXiv Detail & Related papers (2020-09-03T15:08:38Z) - Multi-Scale Thermal to Visible Face Verification via Attribute Guided
Synthesis [55.29770222566124]
We use attributes extracted from visible images to synthesize attribute-preserved visible images from thermal imagery for cross-modal matching.
A novel multi-scale generator is proposed to synthesize the visible image from the thermal image guided by the extracted attributes.
A pre-trained VGG-Face network is leveraged to extract features from the synthesized image and the input visible image for verification.
arXiv Detail & Related papers (2020-04-20T01:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.