論文の概要: Bifurcated backbone strategy for RGB-D salient object detection
- arxiv url: http://arxiv.org/abs/2007.02713v3
- Date: Wed, 18 Aug 2021 01:13:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 02:45:16.007821
- Title: Bifurcated backbone strategy for RGB-D salient object detection
- Title(参考訳): RGB-Dサルエント物体検出のためのバイフルケートバックボーン戦略
- Authors: Yingjie Zhai, Deng-Ping Fan, Jufeng Yang, Ali Borji, Ling Shao, Junwei
Han, Liang Wang
- Abstract要約: 我々は、RGB-Dの高次物体検出に固有のマルチモーダル・マルチレベルの性質を活用して、新しいカスケードリファインメントネットワークを考案する。
アーキテクチャは Bifurcated Backbone Strategy Network (BBS-Net) と呼ばれ、シンプルで効率的でバックボーンに依存しない。
- 参考スコア(独自算出の注目度): 168.19708737906618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-level feature fusion is a fundamental topic in computer vision. It has
been exploited to detect, segment and classify objects at various scales. When
multi-level features meet multi-modal cues, the optimal feature aggregation and
multi-modal learning strategy become a hot potato. In this paper, we leverage
the inherent multi-modal and multi-level nature of RGB-D salient object
detection to devise a novel cascaded refinement network. In particular, first,
we propose to regroup the multi-level features into teacher and student
features using a bifurcated backbone strategy (BBS). Second, we introduce a
depth-enhanced module (DEM) to excavate informative depth cues from the channel
and spatial views. Then, RGB and depth modalities are fused in a complementary
way. Our architecture, named Bifurcated Backbone Strategy Network (BBS-Net), is
simple, efficient, and backbone-independent. Extensive experiments show that
BBS-Net significantly outperforms eighteen SOTA models on eight challenging
datasets under five evaluation measures, demonstrating the superiority of our
approach ($\sim 4 \%$ improvement in S-measure $vs.$ the top-ranked model:
DMRA-iccv2019). In addition, we provide a comprehensive analysis on the
generalization ability of different RGB-D datasets and provide a powerful
training set for future research.
- Abstract(参考訳): マルチレベル機能融合はコンピュータビジョンの基本的なトピックである。
さまざまなスケールのオブジェクトの検出、セグメント化、分類に使用されている。
マルチレベル機能がマルチモーダルキューに適合すると、最適な特徴集約とマルチモーダル学習戦略がホットポテトとなる。
本稿では,RGB-Dの高次物体検出に固有のマルチモーダル・マルチレベル特性を活用し,新しいカスケードリファインメントネットワークを考案する。
特に,まず,教師と生徒に,バイフルシッドバックボーン戦略(BBS)を用いてマルチレベル機能を再編成することを提案する。
第2に,チャネルと空間ビューから情報深度を抽出するディープエンハンスモジュール(DEM)を導入する。
そして、RGBと深さモダリティを相補的に融合させる。
アーキテクチャは Bifurcated Backbone Strategy Network (BBS-Net) と呼ばれ、シンプルで効率的でバックボーンに依存しない。
大規模な実験により、BBS-Netは5つの評価尺度に基づく8つの挑戦的データセットにおいて18のSOTAモデルよりも大幅に優れており、我々のアプローチの優位性を実証している("\sim 4 \%$ improvement in S-measure $vs")。
最高ランクモデル:DMRA-iccv2019)。
さらに、異なるRGB-Dデータセットの一般化能力に関する包括的な分析を行い、将来の研究のための強力なトレーニングセットを提供する。
関連論文リスト
- HODINet: High-Order Discrepant Interaction Network for RGB-D Salient
Object Detection [4.007827908611563]
RGB-D Salient Object Detection (SOD) は、RGBと深度情報を共同でモデル化することで、顕著な領域を検出することを目的としている。
ほとんどのRGB-D SOD法は、同じ種類のバックボーンと融合モジュールを適用して、マルチモーダリティとマルチステージの特徴を同一に学習する。
本稿では,RGB-D SODのための高次離散相互作用ネットワーク(HODINet)を提案する。
論文 参考訳(メタデータ) (2023-07-03T11:56:21Z) - HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness [2.341385717236931]
本稿では,RGB-Dサリエンシ検出のための階層的深度認識ネットワーク(HiDAnet)を提案する。
我々のモチベーションは、幾何学的先行の多粒性特性がニューラルネットワーク階層とよく相関しているという観察から来ています。
当社のHiDAnetは最先端の手法よりも大きなマージンで良好に動作します。
論文 参考訳(メタデータ) (2023-01-18T10:00:59Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - M2RNet: Multi-modal and Multi-scale Refined Network for RGB-D Salient
Object Detection [1.002712867721496]
RGB-Dに基づく手法は、多モード特徴融合の不整合性とマルチスケール特徴集合の不整合に悩まされることが多い。
マルチモーダル・マルチスケール改良ネットワーク(M2RNet)を提案する。
このネットワークには3つの重要なコンポーネントが紹介されている。
論文 参考訳(メタデータ) (2021-09-16T12:15:40Z) - RGB-D Saliency Detection via Cascaded Mutual Information Minimization [122.8879596830581]
既存のRGB-Dサリエンシ検出モデルは、RGBと深さを効果的にマルチモーダル学習を実現するために明示的に奨励するものではない。
本稿では,RGB画像と深度データ間のマルチモーダル情報を「明示的」にモデル化するために,相互情報最小化による新しい多段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-15T12:31:27Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
本稿では,RGB-D SODのためのクロスモダリティ離散相互作用ネットワーク(CDINet)を提案する。
2つのコンポーネントは、効果的な相互モダリティ相互作用を実装するように設計されている。
我々のネットワークは、定量的にも質的にも15ドルの最先端の手法より優れています。
論文 参考訳(メタデータ) (2021-08-04T11:24:42Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
我々は、自己教師付き表現学習を用いて、クロスモーダルオートエンコーダと深さ-輪郭推定という2つのプレテキストタスクを設計する。
我々のプレテキストタスクは、ネットワークがリッチなセマンティックコンテキストをキャプチャする事前トレーニングを実行するのに、少数のRGB-Dデータセットしか必要としない。
RGB-D SODにおけるクロスモーダル核融合の固有の問題として,マルチパス核融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-01-29T09:16:06Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。