論文の概要: Black-box Adversarial Example Generation with Normalizing Flows
- arxiv url: http://arxiv.org/abs/2007.02734v1
- Date: Mon, 6 Jul 2020 13:14:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 01:16:26.835953
- Title: Black-box Adversarial Example Generation with Normalizing Flows
- Title(参考訳): 正規化流れを伴うブラックボックス逆例生成
- Authors: Hadi M. Dolatabadi, Sarah Erfani, Christopher Leckie
- Abstract要約: 正規化フローを用いたブラックボックス対向攻撃を提案する。
本研究では,事前学習したフローベースモデルベース分布を探索することにより,相手を見つける方法を示す。
- 参考スコア(独自算出の注目度): 11.510009152620666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network classifiers suffer from adversarial vulnerability:
well-crafted, unnoticeable changes to the input data can affect the classifier
decision. In this regard, the study of powerful adversarial attacks can help
shed light on sources of this malicious behavior. In this paper, we propose a
novel black-box adversarial attack using normalizing flows. We show how an
adversary can be found by searching over a pre-trained flow-based model base
distribution. This way, we can generate adversaries that resemble the original
data closely as the perturbations are in the shape of the data. We then
demonstrate the competitive performance of the proposed approach against
well-known black-box adversarial attack methods.
- Abstract(参考訳): 深いニューラルネットワーク分類器は、敵対的な脆弱性に悩まされる: 入力データに対する巧妙で目立たない変更は、分類器の決定に影響を及ぼす。
この点において、強力な敵攻撃の研究は、この悪意ある行動の源泉を照らすのに役立つ。
本稿では,正規化フローを用いたブラックボックス対向攻撃を提案する。
本稿では,事前学習されたフローベースのモデルベース分布を探索することで,敵を見つけ出す方法を示す。
このようにして、摂動がデータの形にあるように、元のデータによく似た敵を生成することができる。
次に,ブラックボックス攻撃手法に対する提案手法の競合性能を実証する。
関連論文リスト
- Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
ブラックボックス攻撃では、ターゲットモデルのパラメータが不明であり、攻撃者はクエリのフィードバックに基づいて、クエリの予算に基づいて摂動を成功させることを目指している。
本稿では,実例レベルの逆転可能性という,過去の攻撃に対するフィードバック情報を活用することを提案する。
この2種類の逆転送性を持つフレームワークは,市販のクエリベースのアタック手法と自然に組み合わせて性能を向上させることができる。
論文 参考訳(メタデータ) (2023-01-01T07:24:12Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
ブラックボックスの敵攻撃は、行動認識システムに現実的な脅威をもたらす。
本稿では,摂動を発生させることにより,これらの欠点に対処する新たな行動認識攻撃を提案する。
提案手法は,最先端のクエリベースおよび転送ベース攻撃と比較して,8%,12%の偽装率を達成する。
論文 参考訳(メタデータ) (2022-11-23T17:47:49Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
これにより、システムの学習アルゴリズムを騙すような、衝突する入力セットを作れます。
ホワイトボックス環境では、これらの攻撃は非常に成功しており、ターゲットモデルの予測が偶然よりも悪化する可能性があることを示す。
攻撃による「過度な対応」と、攻撃が生成されたモデルと攻撃が転送されたモデルとのミスマッチという2つの仮説を探索する。
論文 参考訳(メタデータ) (2022-11-23T14:55:44Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
HAR(Human Activity Recognition)は、自動運転車など、幅広い用途に採用されている。
近年,敵対的攻撃に対する脆弱性から,骨格型HAR法の堅牢性に疑問が呈されている。
攻撃者がモデルの入出力しかアクセスできない場合でも、そのような脅威が存在することを示す。
BASARと呼ばれる骨格をベースとしたHARにおいて,最初のブラックボックス攻撃手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T09:51:28Z) - Modelling Adversarial Noise for Adversarial Defense [96.56200586800219]
敵の防御は、通常、敵の音を除去したり、敵の頑強な目標モデルを訓練するために、敵の例を活用することに焦点を当てる。
逆データと自然データの関係は、逆データからクリーンデータを推測し、最終的な正しい予測を得るのに役立ちます。
本研究では, ラベル空間の遷移関係を学習するために, 逆方向の雑音をモデル化し, 逆方向の精度を向上させることを目的とした。
論文 参考訳(メタデータ) (2021-09-21T01:13:26Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Local Black-box Adversarial Attacks: A Query Efficient Approach [64.98246858117476]
アドリアックは、セキュリティに敏感なシナリオにおけるディープニューラルネットワークの適用を脅かしている。
ブラックボックス攻撃における限られたクエリ内でのみクリーンな例の識別領域を摂動させる新しいフレームワークを提案する。
攻撃成功率の高いブラックボックス摂動時のクエリ効率を大幅に改善できることを示すため,広範な実験を行った。
論文 参考訳(メタデータ) (2021-01-04T15:32:16Z) - AdvFlow: Inconspicuous Black-box Adversarial Attacks using Normalizing
Flows [11.510009152620666]
本稿では,画像分類器に対する新たなブラックボックス攻撃手法であるAdvFlowを紹介する。
提案手法では, クリーンなデータ分布に密接に従う敵が生成され, 検出の可能性が低下する。
論文 参考訳(メタデータ) (2020-07-15T02:13:49Z) - Adversarial Feature Desensitization [12.401175943131268]
本稿では,ドメイン適応分野からの洞察を基盤とした,対向ロバスト性に対する新しいアプローチを提案する。
提案手法は,入力の逆方向の摂動に対して不変な特徴を学習することを目的として,AFD(Adversarial Feature Desensitization)と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T14:20:02Z) - Data-Free Adversarial Perturbations for Practical Black-Box Attack [25.44755251319056]
本研究では, 学習データ分布の知識を必要とせずに, 対象モデルを騙し, 対向的摂動を創り出すためのデータフリー手法を提案する。
提案手法は,攻撃者が訓練データにアクセスできない場合でも,現在のディープラーニングモデルが依然として危険であることを実証的に示す。
論文 参考訳(メタデータ) (2020-03-03T02:22:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。