Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image
Registration
- URL: http://arxiv.org/abs/2007.02790v2
- Date: Mon, 21 Sep 2020 06:12:10 GMT
- Title: Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image
Registration
- Authors: Zhe Xu, Jie Luo, Jiangpeng Yan, Ritvik Pulya, Xiu Li, William Wells
III, Jayender Jagadeesan
- Abstract summary: Deformable image registration between Computed Tomography (CT) images and Magnetic Resonance (MR) imaging is essential for many image-guided therapies.
In this paper, we propose a novel translation-based unsupervised deformable image registration method.
Our method has been evaluated on two clinical datasets and demonstrates promising results compared to state-of-the-art traditional and learning-based methods.
- Score: 20.637787406888478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable image registration between Computed Tomography (CT) images and
Magnetic Resonance (MR) imaging is essential for many image-guided therapies.
In this paper, we propose a novel translation-based unsupervised deformable
image registration method. Distinct from other translation-based methods that
attempt to convert the multimodal problem (e.g., CT-to-MR) into a unimodal
problem (e.g., MR-to-MR) via image-to-image translation, our method leverages
the deformation fields estimated from both: (i) the translated MR image and
(ii) the original CT image in a dual-stream fashion, and automatically learns
how to fuse them to achieve better registration performance. The multimodal
registration network can be effectively trained by computationally efficient
similarity metrics without any ground-truth deformation. Our method has been
evaluated on two clinical datasets and demonstrates promising results compared
to state-of-the-art traditional and learning-based methods.
Related papers
- Enhancing CT Image synthesis from multi-modal MRI data based on a
multi-task neural network framework [16.864720020158906]
We propose a versatile multi-task neural network framework, based on an enhanced Transformer U-Net architecture.
We decompose the traditional problem of synthesizing CT images into distinct subtasks.
To enhance the framework's versatility in handling multi-modal data, we expand the model with multiple image channels.
arXiv Detail & Related papers (2023-12-13T18:22:38Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Unsupervised Multi-Modal Medical Image Registration via
Discriminator-Free Image-to-Image Translation [4.43142018105102]
We propose a novel translation-based unsupervised deformable image registration approach to convert the multi-modal registration problem to a mono-modal one.
Our approach incorporates a discriminator-free translation network to facilitate the training of the registration network and a patchwise contrastive loss to encourage the translation network to preserve object shapes.
arXiv Detail & Related papers (2022-04-28T17:18:21Z) - Mutual information neural estimation for unsupervised multi-modal
registration of brain images [0.0]
We propose guiding the training of a deep learning-based registration method with MI estimation between an image-pair in an end-to-end trainable network.
Our results show that a small, 2-layer network produces competitive results in both mono- and multimodal registration, with sub-second run-times.
Real-time clinical application will benefit from a better visual matching of anatomical structures and less registration failures/outliers.
arXiv Detail & Related papers (2022-01-25T13:22:34Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
Current deep learning (DL)-based image registration approaches learn the spatial transformation from one image to another by leveraging a convolutional neural network.
We present a novel dual-flow transformation network with region consistency constraint which maximizes the similarity of ROIs within a pair of images.
Experiments on four public 3D MRI datasets show that the proposed method achieves the best registration performance in accuracy and generalization.
arXiv Detail & Related papers (2021-12-04T05:30:44Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
Unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration.
The estimated deformation fields of the existing methods fully rely on the to-be-registered image pair.
We propose a novel multimodal registration framework, which leverages the deformation fields estimated from both.
arXiv Detail & Related papers (2020-11-12T05:47:20Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
Multi-modal imaging sensors are currently involved at different steps of an interventional therapeutic work-flow.
Merging this information relies on a correct spatial alignment of the observed anatomy between the acquired images.
We show that a regional registration approach using voxel patches provides a good structural compromise between the voxel-wise and "global shifts" approaches.
arXiv Detail & Related papers (2020-11-09T11:27:45Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.