論文の概要: Complex Human Action Recognition in Live Videos Using Hybrid FR-DL
Method
- arxiv url: http://arxiv.org/abs/2007.02811v1
- Date: Mon, 6 Jul 2020 15:12:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 01:16:18.060676
- Title: Complex Human Action Recognition in Live Videos Using Hybrid FR-DL
Method
- Title(参考訳): ハイブリッドfr-dl法を用いたライブビデオにおける複雑なヒューマンアクション認識
- Authors: Fatemeh Serpush, Mahdi Rezaei
- Abstract要約: 入力シーケンス中の代表フレームの自動選択により,前処理フェーズの課題に対処する。
本稿では,バックグラウンドサブトラクションとHOGを用いたハイブリッド手法を提案し,続いて深層ニューラルネットワークと骨格モデリング手法を適用した。
本稿では,このモデルをFR-DL(Feature Reduction & Deep Learning based action recognition method)と呼ぶ。
- 参考スコア(独自算出の注目度): 1.027974860479791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated human action recognition is one of the most attractive and
practical research fields in computer vision, in spite of its high
computational costs. In such systems, the human action labelling is based on
the appearance and patterns of the motions in the video sequences; however, the
conventional methodologies and classic neural networks cannot use temporal
information for action recognition prediction in the upcoming frames in a video
sequence. On the other hand, the computational cost of the preprocessing stage
is high. In this paper, we address challenges of the preprocessing phase, by an
automated selection of representative frames among the input sequences.
Furthermore, we extract the key features of the representative frame rather
than the entire features. We propose a hybrid technique using background
subtraction and HOG, followed by application of a deep neural network and
skeletal modelling method. The combination of a CNN and the LSTM recursive
network is considered for feature selection and maintaining the previous
information, and finally, a Softmax-KNN classifier is used for labelling human
activities. We name our model as Feature Reduction & Deep Learning based action
recognition method, or FR-DL in short. To evaluate the proposed method, we use
the UCF dataset for the benchmarking which is widely-used among researchers in
action recognition research. The dataset includes 101 complicated activities in
the wild. Experimental results show a significant improvement in terms of
accuracy and speed in comparison with six state-of-the-art articles.
- Abstract(参考訳): 人間の行動認識の自動化は、高い計算コストにもかかわらず、コンピュータビジョンにおいて最も魅力的で実践的な研究分野の1つである。
このようなシステムでは、人間の行動ラベリングはビデオシーケンスの動作の出現とパターンに基づいているが、従来の手法や古典的ニューラルネットワークでは、ビデオシーケンス内の次のフレームでの行動認識予測に時間情報を使用することはできない。
一方,前処理段階の計算コストは高い。
本稿では,入力シーケンス中の代表フレームの自動選択により,前処理フェーズの課題に対処する。
さらに,全体の特徴ではなく,代表フレームの重要な特徴を抽出する。
本稿では,バックグラウンドサブトラクションとHOGを用いたハイブリッド手法を提案し,続いて深層ニューラルネットワークと骨格モデリング手法を適用した。
CNNとLSTM再帰ネットワークの組み合わせは、特徴の選択と以前の情報維持のために考慮され、最後に、人間の活動のラベル付けにSoftmax-KNN分類器が使用される。
本稿では,このモデルをFR-DL(Feature Reduction & Deep Learning based action recognition method)と呼ぶ。
提案手法を評価するために,動作認識研究の研究者の間で広く利用されているベンチマークにUCFデータセットを用いた。
データセットには101の複雑なアクティビティが含まれている。
実験の結果,6つの最先端記事と比較して精度と速度が有意に向上した。
関連論文リスト
- Pre-training for Action Recognition with Automatically Generated Fractal Datasets [23.686476742398973]
本稿では,短い合成ビデオクリップの大規模データセットを自動生成する手法を提案する。
生成されたビデオクリップは、複雑なマルチスケール構造を生成するフラクタルの自然能力に起因した顕著な多様性によって特徴づけられる。
通常のKineeticsの事前トレーニングと比較すると、報告結果が近くなり、下流のデータセットよりも優れています。
論文 参考訳(メタデータ) (2024-11-26T16:51:11Z) - Human activity recognition using deep learning approaches and single
frame cnn and convolutional lstm [0.0]
我々は、ビデオから人間の行動を認識するために、単一のフレーム畳み込みニューラルネットワーク(CNN)と畳み込み長短期記憶という、深層学習に基づく2つのアプローチを探索する。
2つのモデルは、ベンチマークアクション認識データセットであるUCF50と、実験のために作成された別のデータセットでトレーニングされ、評価された。
どちらのモデルも精度は良いが、単一のフレームCNNモデルはUCF50データセットで99.8%の精度で畳み込みLSTMモデルより優れている。
論文 参考訳(メタデータ) (2023-04-18T01:33:29Z) - Differentiable Frequency-based Disentanglement for Aerial Video Action
Recognition [56.91538445510214]
ビデオにおける人間の行動認識のための学習アルゴリズムを提案する。
我々のアプローチは、主に斜めに配置されたダイナミックカメラから取得されるUAVビデオのために設計されている。
我々はUAV HumanデータセットとNEC Droneデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-09-15T22:16:52Z) - Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification [0.5735035463793008]
現在のSOTA (State-of-the-art) には、アルゴリズム検索空間の一部として入力データを操作するための従来の手法は含まれていない。
進化的多目的アルゴリズム設計エンジン(EMADE, Evolutionary Multi-objective Algorithm Design Engine)は、従来の機械学習手法のための多目的進化的検索フレームワークである。
CIFAR-10画像分類ベンチマークデータセットにおいて,これらの手法を検索空間の一部として含めることで,性能向上の可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T20:03:09Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - Event and Activity Recognition in Video Surveillance for Cyber-Physical
Systems [0.0]
長期動作パターンは、イベントを認識するタスクにおいて、それ自体が重要な役割を果たす。
本研究では,イベント認識作業において,長期動作パターンのみが重要な役割を担っていることを示す。
時間的特徴のみをハイブリッド畳み込みニューラルネットワーク(CNN)+リカレントニューラルネットワーク(RNN)アーキテクチャで活用する。
論文 参考訳(メタデータ) (2021-11-03T08:30:38Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - HighlightMe: Detecting Highlights from Human-Centric Videos [52.84233165201391]
我々は,人間中心のビデオからハイライト可能な抜粋を検出するために,ドメインとユーザに依存しないアプローチを提案する。
本研究では,時空間グラフ畳み込みを用いたオートエンコーダネットワークを用いて,人間の活動やインタラクションを検出する。
我々は,最先端の手法に比べて,人手によるハイライトのマッチングの平均精度が4~12%向上したことを観察した。
論文 参考訳(メタデータ) (2021-10-05T01:18:15Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
我々は、ビデオベースの表情認識のための共通のCNN-RNNモデルに、GCN(Graph Convolutional Network)層を導入する。
我々は、CK+、Oulu-CASIA、MMIの3つの広く使われているデータセットと、AFEW8.0の挑戦的なワイルドデータセットについて、本手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-26T07:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。