論文の概要: Decentralized policy learning with partial observation and mechanical
constraints for multiperson modeling
- arxiv url: http://arxiv.org/abs/2007.03155v2
- Date: Fri, 1 Dec 2023 14:19:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 19:28:07.994780
- Title: Decentralized policy learning with partial observation and mechanical
constraints for multiperson modeling
- Title(参考訳): 多人数モデリングのための部分的観測と機械的制約による分散ポリシー学習
- Authors: Keisuke Fujii, Naoya Takeishi, Yoshinobu Kawahara, Kazuya Takeda
- Abstract要約: 本稿では,部分的な観察と機械的制約を分散的に表現した逐次生成モデルを提案する。
本手法は実世界のデータを用いて現実的な軌跡を生成するマルチエージェントシミュレータとして利用することができる。
- 参考スコア(独自算出の注目度): 14.00358511581803
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Extracting the rules of real-world multi-agent behaviors is a current
challenge in various scientific and engineering fields. Biological agents
independently have limited observation and mechanical constraints; however,
most of the conventional data-driven models ignore such assumptions, resulting
in lack of biological plausibility and model interpretability for behavioral
analyses. Here we propose sequential generative models with partial observation
and mechanical constraints in a decentralized manner, which can model agents'
cognition and body dynamics, and predict biologically plausible behaviors. We
formulate this as a decentralized multi-agent imitation-learning problem,
leveraging binary partial observation and decentralized policy models based on
hierarchical variational recurrent neural networks with physical and
biomechanical penalties. Using real-world basketball and soccer datasets, we
show the effectiveness of our method in terms of the constraint violations,
long-term trajectory prediction, and partial observation. Our approach can be
used as a multi-agent simulator to generate realistic trajectories using
real-world data.
- Abstract(参考訳): 実世界のマルチエージェント行動のルールを抽出することは、様々な科学・工学分野における現在の課題である。
生物学的エージェントは独立に観察と機械的制約を制限しているが、従来のデータ駆動モデルのほとんどはそのような仮定を無視し、生物学的な可能性や行動分析のモデル解釈性を欠いている。
本稿では, エージェントの認知と身体動態をモデル化し, 生物学的に妥当な行動を予測する, 部分観察と機械的制約を分散的に有する逐次生成モデルを提案する。
この問題を分散マルチエージェント模倣学習問題として定式化し,物理的および生体力学的ペナルティを有する階層的変動リカレントニューラルネットワークに基づくバイナリ部分観測と分散ポリシーモデルを活用する。
実世界のバスケットボールとサッカーのデータセットを用いて, 制約違反, 長期軌道予測, 部分観測の観点から, 本手法の有効性を示す。
本手法は,実世界データを用いて現実の軌跡を生成するマルチエージェントシミュレータとして使用できる。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesicは、ベイズ原理とディープニューラルネットワークを統合し、基盤となる分布をモデル化する新しいフレームワークである。
我々は,いくつかのモビリティデータセットに対するアプローチを評価し,最先端の異常検出手法の大幅な改善を実証した。
論文 参考訳(メタデータ) (2024-10-01T19:02:06Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning interaction rules from multi-animal trajectories via augmented
behavioral models [8.747278400158718]
グランガー因果関係は観測された時系列データから相互作用を分析するための実践的なフレームワークである。
この枠組みは動物行動における生成過程の構造を無視している。
マルチアニマル軌道からグラガー因果関係を学習するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-12T11:33:56Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - The Role of Isomorphism Classes in Multi-Relational Datasets [6.419762264544509]
アイソモーフィックリークは,マルチリレーショナル推論の性能を過大評価することを示す。
モデル評価のためのアイソモーフィック・アウェア・シンセサイティング・ベンチマークを提案する。
また、同型類は単純な優先順位付けスキームによって利用することができることを示した。
論文 参考訳(メタデータ) (2020-09-30T12:15:24Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
我々はマルコフであるGPDMを近似し、その制御理論的性質を解析する。
結果は、近似モデルのパワーを示す数値的な例で示される。
論文 参考訳(メタデータ) (2020-06-25T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。