論文の概要: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2007.03169v1
- Date: Tue, 7 Jul 2020 02:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 19:50:57.152906
- Title: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning
- Title(参考訳): 空間意味埋め込みネットワーク:Deep Metric Learningを用いた高速3次元インスタンス分割
- Authors: Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim
- Abstract要約: ディープラーニングを用いた3次元インスタンスセグメンテーションのための,単純かつ効率的なアルゴリズムを提案する。
大規模シーンからの高レベルのインテリジェントなタスクに対して、3Dインスタンスセグメンテーションはオブジェクトの個々のインスタンスを認識する。
我々は,ScanNet 3D インスタンス分割ベンチマークにおいて,我々のアルゴリズムの最先端性能をAPスコアで示す。
- 参考スコア(独自算出の注目度): 5.699350798684963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose spatial semantic embedding network (SSEN), a simple, yet efficient
algorithm for 3D instance segmentation using deep metric learning. The raw 3D
reconstruction of an indoor environment suffers from occlusions, noise, and is
produced without any meaningful distinction between individual entities. For
high-level intelligent tasks from a large scale scene, 3D instance segmentation
recognizes individual instances of objects. We approach the instance
segmentation by simply learning the correct embedding space that maps
individual instances of objects into distinct clusters that reflect both
spatial and semantic information. Unlike previous approaches that require
complex pre-processing or post-processing, our implementation is compact and
fast with competitive performance, maintaining scalability on large scenes with
high resolution voxels. We demonstrate the state-of-the-art performance of our
algorithm in the ScanNet 3D instance segmentation benchmark on AP score.
- Abstract(参考訳): 深層学習を用いた3次元インスタンスセグメンテーションのための簡易かつ効率的なアルゴリズムである空間意味埋め込みネットワーク(SSEN)を提案する。
室内環境の生の3次元再構築は、閉塞や騒音に苦しめられ、個々の実体間で意味のある区別をすることなく生成される。
大規模シーンからの高度なインテリジェントタスクの場合、3dインスタンスセグメンテーションはオブジェクトの個々のインスタンスを認識する。
オブジェクトの個々のインスタンスを、空間情報と意味情報の両方を反映した異なるクラスタにマッピングする、正しい埋め込み空間を単に学習することで、インスタンスセグメンテーションにアプローチする。
複雑な前処理や後処理を必要とする従来のアプローチとは異なり、我々の実装はコンパクトで高速で競合する性能を備え、高解像度のボクセルを備えた大規模シーンでのスケーラビリティを維持しています。
我々は,ScanNet 3D インスタンス分割ベンチマークにおいて,我々のアルゴリズムの最先端性能を示す。
関連論文リスト
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation [50.51125319374404]
ラベルのないデータから純粋なインスタンス知識を探索し活用するための,新たな自己学習ネットワークInsTeacher3Dを提案する。
複数の大規模データセットの実験結果から、InsTeacher3Dは最先端の半教師付きアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-06-24T16:35:58Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
3D環境を理解するには、きめ細かい風景を理解する必要がある。
教師なしの方法で3次元シーンのインスタンスセグメンテーションを予測することを提案する。
平均精度は13.3%,F1スコアは9.1%向上した。
論文 参考訳(メタデータ) (2024-03-24T22:53:16Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - Instance-aware 3D Semantic Segmentation powered by Shape Generators and
Classifiers [28.817905887080293]
本稿では,3次元セマンティックセグメンテーションのための新しいインスタンス認識手法を提案する。
本手法は,学習した特徴表現の一貫性を促進するために,インスタンスレベルでの幾何処理タスクを組み合わせる。
論文 参考訳(メタデータ) (2023-11-21T02:14:16Z) - SupeRGB-D: Zero-shot Instance Segmentation in Cluttered Indoor
Environments [67.34330257205525]
本研究では,RGB-Dデータからゼロショットのインスタンスセグメンテーション(ZSIS)を探索し,意味的カテゴリに依存しない方法で未知のオブジェクトを識別する。
本稿では,注釈付きオブジェクトを用いて画素のオブジェクト性」を学習し,乱雑な屋内環境における未知のオブジェクトカテゴリに一般化する手法を提案する。
論文 参考訳(メタデータ) (2022-12-22T17:59:48Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
本稿では,リアルタイムインスタンスセグメンテーションのための概念的・効率的・完全畳み込み型フレームワークを提案する。
SparseInstは非常に高速な推論速度を持ち、COCOベンチマークで40 FPSと37.9 APを達成した。
論文 参考訳(メタデータ) (2022-03-24T03:15:39Z) - OccuSeg: Occupancy-aware 3D Instance Segmentation [39.71517989569514]
3D占有サイズ」とは、各インスタンスが占有するボクセルの数である。
OccuSegは、3Dインスタンスのセグメンテーションスキームである。
3つの実世界のデータセット上での“最先端のパフォーマンス”。
論文 参考訳(メタデータ) (2020-03-14T02:48:55Z) - SDOD:Real-time Segmenting and Detecting 3D Object by Depth [5.97602869680438]
本稿では,3次元物体を奥行きで分割・検出するリアルタイムフレームワークを提案する。
オブジェクトの深さを深度カテゴリに分類し、インスタンス分割タスクをピクセルレベルの分類タスクに変換する。
挑戦的なKITTIデータセットの実験から、我々のアプローチはLklNetを約1.8倍の性能で、セグメンテーションと3D検出の速度を上回ります。
論文 参考訳(メタデータ) (2020-01-26T09:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。