論文の概要: Estimation and Inference with Trees and Forests in High Dimensions
- arxiv url: http://arxiv.org/abs/2007.03210v2
- Date: Wed, 21 Oct 2020 18:44:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 20:44:50.636555
- Title: Estimation and Inference with Trees and Forests in High Dimensions
- Title(参考訳): 樹木と森林の高次元推定と推定
- Authors: Vasilis Syrgkanis and Manolis Zampetakis
- Abstract要約: 浅い木は、CARTの実証的なMSE基準により、周囲の次元$d$に対数的にのみ依存するMSEレートを達成する。
また,本研究の結果から,完全に成長した森林はMSEの速さを達成でき,その予測も正直に正常であることが示唆された。
- 参考スコア(独自算出の注目度): 23.732259124656903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the finite sample mean squared error (MSE) performance of
regression trees and forests in the high dimensional regime with binary
features, under a sparsity constraint. We prove that if only $r$ of the $d$
features are relevant for the mean outcome function, then shallow trees built
greedily via the CART empirical MSE criterion achieve MSE rates that depend
only logarithmically on the ambient dimension $d$. We prove upper bounds, whose
exact dependence on the number relevant variables $r$ depends on the
correlation among the features and on the degree of relevance. For strongly
relevant features, we also show that fully grown honest forests achieve fast
MSE rates and their predictions are also asymptotically normal, enabling
asymptotically valid inference that adapts to the sparsity of the regression
function.
- Abstract(参考訳): 本研究では,二元性制約下での高次元環境下での回帰木と森林の有限サンプル平均二乗誤差(mse)性能を解析した。
平均的な結果関数に$d$の機能のr$だけを関連付けると、CART経験的MSE基準による浅い木は、周囲の次元$d$に対数的にのみ依存するMSEレートを達成する。
関係変数 $r$ に厳密に依存する上限は、特徴間の相関や関連性の度合いに依存する。
また,本研究の結果から,完全成長林ではmse速度が速く,その予測は漸近的に正常であり,回帰関数のスパース性に適応した漸近的に有効な推論が可能となった。
関連論文リスト
- Accurate estimation of feature importance faithfulness for tree models [3.545940115969205]
我々は、PGI二乗と呼ぶ特徴ランク(または属性)の予測忠実度を摂動に基づく計量として考える。
PGI2乗に基づく木モデルの予測において重要となる特徴のランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-04-04T13:09:26Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
限界確率はクロスバリデーションの指標を思い起こさせるべきであり、どちらもより大きな入力次元で劣化すべきである、と一般的に信じられている。
我々は,ハイパーパラメータをチューニングすることにより,入力次元と単調に改善できることを証明した。
また、クロスバリデーションの指標は、二重降下の特徴である質的に異なる挙動を示すことも証明した。
論文 参考訳(メタデータ) (2022-10-14T08:09:33Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
位置スケール・異方性雑音モデル(LSNM)のクラスについて検討する。
症例によっては, 因果方向が同定可能であることが示唆された。
我々は,LSNMの2つの推定器を提案し,その1つは(非線形)特徴写像に基づく推定器と,1つはニューラルネットワークに基づく推定器を提案する。
論文 参考訳(メタデータ) (2022-10-13T17:18:59Z) - TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression [0.0]
ツリーアンサンブルを使うことの利点と柔軟な確率分布をモデル化する能力を組み合わせたツリーベースアプローチであるTreeFlowを紹介した。
提案手法は, 諸量, 特徴量, 目標寸法の異なる回帰ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2022-06-08T20:06:23Z) - Lassoed Tree Boosting [53.56229983630983]
有界断面変動のカドラー関数の大きな非パラメトリック空間において,早期に停止するn-1/4$ L2の収束速度を持つ勾配向上木アルゴリズムを証明した。
我々の収束証明は、ネストしたドンスカー類の経験的損失最小化子による早期停止に関する新しい一般定理に基づいている。
論文 参考訳(メタデータ) (2022-05-22T00:34:41Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
両プレイヤーゼロサムマルコフゲーム(MG)をオフライン環境で研究する。
目標は、事前収集されたデータセットに基づいて、近似的なナッシュ均衡(NE)ポリシーペアを見つけることである。
論文 参考訳(メタデータ) (2022-02-15T15:39:30Z) - Data-driven advice for interpreting local and global model predictions
in bioinformatics problems [17.685881417954782]
条件付き特徴コントリビューション(CFC)は、予測のテキストローカルでケースバイケースの説明を提供する。
両手法で計算した説明を, 公開されている164の分類問題に対して比較した。
ランダム林では,地域とグローバルのSHAP値とCFCスコアの相関関係が極めて高い。
論文 参考訳(メタデータ) (2021-08-13T12:41:39Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Large Scale Prediction with Decision Trees [9.917147243076645]
本稿では,分類・回帰木(CART)とC4.5手法を用いて構築した決定木が,回帰・分類タスクに一貫性があることを示す。
この分析における重要なステップは、不平等の確立であり、不特定モデルの適合性と複雑性のトレードオフを正確に評価することができる。
論文 参考訳(メタデータ) (2021-04-28T16:59:03Z) - Uncovering Feature Interdependencies in High-Noise Environments with
Stepwise Lookahead Decision Forests [0.0]
ランダムフォレストアルゴリズムの「Stepwise lookahead」変異は、二項特徴相互依存性をよりよく発見する能力を示す。
銅先物取引の長期的戦略は、毎日の物価リターンの兆候を予測するために、欲望と無作為な森林の両方を訓練することで実証される。
論文 参考訳(メタデータ) (2020-09-30T11:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。