Robust Learning with Frequency Domain Regularization
- URL: http://arxiv.org/abs/2007.03244v1
- Date: Tue, 7 Jul 2020 07:29:20 GMT
- Title: Robust Learning with Frequency Domain Regularization
- Authors: Weiyu Guo, Yidong Ouyang
- Abstract summary: We introduce a new regularization method by constraining the frequency spectra of the filter of the model.
We demonstrate the effectiveness of our regularization by (1) defensing to adversarial perturbations; (2) reducing the generalization gap in different architecture; and (3) improving the generalization ability in transfer learning scenario without fine-tune.
- Score: 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolution neural networks have achieved remarkable performance in many
tasks of computing vision. However, CNN tends to bias to low frequency
components. They prioritize capturing low frequency patterns which lead them
fail when suffering from application scenario transformation. While adversarial
example implies the model is very sensitive to high frequency perturbations. In
this paper, we introduce a new regularization method by constraining the
frequency spectra of the filter of the model. Different from band-limit
training, our method considers the valid frequency range probably entangles in
different layers rather than continuous and trains the valid frequency range
end-to-end by backpropagation. We demonstrate the effectiveness of our
regularization by (1) defensing to adversarial perturbations; (2) reducing the
generalization gap in different architecture; (3) improving the generalization
ability in transfer learning scenario without fine-tune.
Related papers
- Towards Combating Frequency Simplicity-biased Learning for Domain Generalization [36.777767173275336]
Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains.
Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets.
We propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset.
arXiv Detail & Related papers (2024-10-21T16:17:01Z) - Accelerating Inference of Networks in the Frequency Domain [8.125023712173686]
We propose performing network inference in the frequency domain to speed up networks whose frequency parameters are sparse.
In particular, we propose a frequency inference chain that is dual to the network inference in the spatial domain.
The proposed approach significantly improves accuracy in the case of a high speedup ratio (over 100x)
arXiv Detail & Related papers (2024-10-06T03:34:38Z) - Tuning Frequency Bias of State Space Models [48.60241978021799]
State space models (SSMs) leverage linear, time-invariant (LTI) systems to learn sequences with long-range dependencies.
We find that SSMs exhibit an implicit bias toward capturing low-frequency components more effectively than high-frequency ones.
arXiv Detail & Related papers (2024-10-02T21:04:22Z) - What do neural networks learn in image classification? A frequency
shortcut perspective [3.9858496473361402]
This study empirically investigates the learning dynamics of frequency shortcuts in neural networks (NNs)
We show that NNs tend to find simple solutions for classification, and what they learn first during training depends on the most distinctive frequency characteristics.
We propose a metric to measure class-wise frequency characteristics and a method to identify frequency shortcuts.
arXiv Detail & Related papers (2023-07-19T08:34:25Z) - Frequency Domain Adversarial Training for Robust Volumetric Medical
Segmentation [111.61781272232646]
It is imperative to ensure the robustness of deep learning models in critical applications such as, healthcare.
We present a 3D frequency domain adversarial attack for volumetric medical image segmentation models.
arXiv Detail & Related papers (2023-07-14T10:50:43Z) - A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree
Spectral Bias of Neural Networks [79.28094304325116]
Despite the capacity of neural nets to learn arbitrary functions, models trained through gradient descent often exhibit a bias towards simpler'' functions.
We show how this spectral bias towards low-degree frequencies can in fact hurt the neural network's generalization on real-world datasets.
We propose a new scalable functional regularization scheme that aids the neural network to learn higher degree frequencies.
arXiv Detail & Related papers (2023-05-16T20:06:01Z) - Frequency Dropout: Feature-Level Regularization via Randomized Filtering [24.53978165468098]
Deep convolutional neural networks are susceptible to picking up spurious correlations from the training signal.
We propose a training strategy, Frequency Dropout, to prevent convolutional neural networks from learning frequency-specific imaging features.
Our results suggest that the proposed approach does not only improve predictive accuracy but also improves robustness against domain shift.
arXiv Detail & Related papers (2022-09-20T16:42:21Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Dense Pruning of Pointwise Convolutions in the Frequency Domain [10.58456555092086]
We propose a technique which wraps each pointwise layer in a discrete cosine transform (DCT) which is truncated to selectively prune coefficients above a given threshold.
Unlike weight pruning techniques which rely on sparse operators, our contiguous frequency band pruning results in fully dense computation.
We apply our technique to MobileNetV2 and in the process reduce computation time by 22% and incur 1% accuracy degradation.
arXiv Detail & Related papers (2021-09-16T04:02:45Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.