Frequency Dropout: Feature-Level Regularization via Randomized Filtering
- URL: http://arxiv.org/abs/2209.09844v1
- Date: Tue, 20 Sep 2022 16:42:21 GMT
- Title: Frequency Dropout: Feature-Level Regularization via Randomized Filtering
- Authors: Mobarakol Islam and Ben Glocker
- Abstract summary: Deep convolutional neural networks are susceptible to picking up spurious correlations from the training signal.
We propose a training strategy, Frequency Dropout, to prevent convolutional neural networks from learning frequency-specific imaging features.
Our results suggest that the proposed approach does not only improve predictive accuracy but also improves robustness against domain shift.
- Score: 24.53978165468098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks have shown remarkable performance on
various computer vision tasks, and yet, they are susceptible to picking up
spurious correlations from the training signal. So called `shortcuts' can occur
during learning, for example, when there are specific frequencies present in
the image data that correlate with the output predictions. Both high and low
frequencies can be characteristic of the underlying noise distribution caused
by the image acquisition rather than in relation to the task-relevant
information about the image content. Models that learn features related to this
characteristic noise will not generalize well to new data.
In this work, we propose a simple yet effective training strategy, Frequency
Dropout, to prevent convolutional neural networks from learning
frequency-specific imaging features. We employ randomized filtering of feature
maps during training which acts as a feature-level regularization. In this
study, we consider common image processing filters such as Gaussian smoothing,
Laplacian of Gaussian, and Gabor filtering. Our training strategy is
model-agnostic and can be used for any computer vision task. We demonstrate the
effectiveness of Frequency Dropout on a range of popular architectures and
multiple tasks including image classification, domain adaptation, and semantic
segmentation using both computer vision and medical imaging datasets. Our
results suggest that the proposed approach does not only improve predictive
accuracy but also improves robustness against domain shift.
Related papers
- Frequency-Guided Masking for Enhanced Vision Self-Supervised Learning [49.275450836604726]
We present a novel frequency-based Self-Supervised Learning (SSL) approach that significantly enhances its efficacy for pre-training.
We employ a two-branch framework empowered by knowledge distillation, enabling the model to take both the filtered and original images as input.
arXiv Detail & Related papers (2024-09-16T15:10:07Z) - Augmenting Deep Learning Adaptation for Wearable Sensor Data through
Combined Temporal-Frequency Image Encoding [4.458210211781739]
We present a novel modified-recurrent plot-based image representation that seamlessly integrates both temporal and frequency domain information.
We evaluate the proposed method using accelerometer-based activity recognition data and a pretrained ResNet model, and demonstrate its superior performance compared to existing approaches.
arXiv Detail & Related papers (2023-07-03T09:29:27Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - An Effective Anti-Aliasing Approach for Residual Networks [27.962502376542588]
Frequency aliasing is a phenomenon that may occur when sub-sampling any signal, such as an image or feature map, causing distortion in the sub-sampled output.
We show that we can mitigate this effect by placing non-trainable blur filters and using smooth activation functions at key locations.
These simple architectural changes lead to substantial improvements in out-of-distribution generalization on both image classification under natural corruptions on ImageNet-C and few-shot learning on Meta-Dataset.
arXiv Detail & Related papers (2020-11-20T22:55:57Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z) - Robust Learning with Frequency Domain Regularization [1.370633147306388]
We introduce a new regularization method by constraining the frequency spectra of the filter of the model.
We demonstrate the effectiveness of our regularization by (1) defensing to adversarial perturbations; (2) reducing the generalization gap in different architecture; and (3) improving the generalization ability in transfer learning scenario without fine-tune.
arXiv Detail & Related papers (2020-07-07T07:29:20Z) - Frequency learning for image classification [1.9336815376402716]
This paper presents a new approach for exploring the Fourier transform of the input images, which is composed of trainable frequency filters.
We propose a slicing procedure to allow the network to learn both global and local features from the frequency-domain representations of the image blocks.
arXiv Detail & Related papers (2020-06-28T00:32:47Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.