論文の概要: Spectral Graph-based Features for Recognition of Handwritten Characters:
A Case Study on Handwritten Devanagari Numerals
- arxiv url: http://arxiv.org/abs/2007.03281v1
- Date: Tue, 7 Jul 2020 08:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 19:06:31.069586
- Title: Spectral Graph-based Features for Recognition of Handwritten Characters:
A Case Study on Handwritten Devanagari Numerals
- Title(参考訳): 手書き文字認識のためのスペクトルグラフに基づく特徴:手書きデバナガリの事例
- Authors: Mohammad Idrees Bhat and B. Sharada
- Abstract要約: 本稿では,手書き文字を表現するために,頑健なグラフ表現とスペクトルグラフ埋め込みの概念を利用する手法を提案する。
提案手法の有効性の検証のために,インド統計研究所コルカタデータセットの標準手書き数値視覚パターン認識について広範な実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretation of different writing styles, unconstrained cursiveness and
relationship between different primitive parts is an essential and challenging
task for recognition of handwritten characters. As feature representation is
inadequate, appropriate interpretation/description of handwritten characters
seems to be a challenging task. Although existing research in handwritten
characters is extensive, it still remains a challenge to get the effective
representation of characters in feature space. In this paper, we make an
attempt to circumvent these problems by proposing an approach that exploits the
robust graph representation and spectral graph embedding concept to
characterise and effectively represent handwritten characters, taking into
account writing styles, cursiveness and relationships. For corroboration of the
efficacy of the proposed method, extensive experiments were carried out on the
standard handwritten numeral Computer Vision Pattern Recognition, Unit of
Indian Statistical Institute Kolkata dataset. The experimental results
demonstrate promising findings, which can be used in future studies.
- Abstract(参考訳): 手書き文字の認識には, 筆跡の解釈, 制約のない曲性, プリミティブ部分間の関係が不可欠であり, 課題となっている。
特徴表現が不十分なため、手書き文字の適切な解釈・記述は難しい課題である。
手書き文字に関する既存の研究は広範囲にわたるが、機能空間における文字の効果的な表現を得ることは依然として課題である。
本稿では,手書き文字を特徴付け,効果的に表現するためのロバストグラフ表現とスペクトルグラフ埋め込み概念を活用し,手書き文字の書き方,筆記性,関係性を考慮したアプローチを提案することにより,これらの問題を回避しようとする。
提案手法の有効性を検証するため、インド統計研究所コルカタデータセットの単位である標準手書き数字コンピュータビジョンパターン認識について広範な実験を行った。
実験結果から,今後の研究に活用できる有望な知見が得られた。
関連論文リスト
- Boosting Semi-Supervised Scene Text Recognition via Viewing and Summarizing [71.29488677105127]
既存のシーンテキスト認識(STR)手法は、特に芸術的で歪んだ文字に対して、挑戦的なテキストを認識するのに苦労している。
人的コストを伴わずに、合成データと実際のラベルなしデータを活用して、対照的な学習ベースのSTRフレームワークを提案する。
本手法は,共通ベンチマークとUnion14M-Benchmarkで平均精度94.7%,70.9%のSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-11-23T15:24:47Z) - Enhancing Representation Generalization in Authorship Identification [9.148691357200216]
著者の身元確認は、出自が公表されていないテキストの著者の身元を確認する。
現代の著作者識別法は、著作者スタイルの識別に有効であることが証明されている。
著者識別におけるスタイリスティックな表現の一般化の促進という課題に対処する。
論文 参考訳(メタデータ) (2023-09-30T17:11:00Z) - Can Authorship Representation Learning Capture Stylistic Features? [5.812943049068866]
本研究では,サロゲートオーサシップ予測タスクで学習した表現が,実際に書体に敏感であることを示す。
結果として、著者の表現は、時間とともに話題が漂うような、ある種のデータシフトに対して堅牢であることが期待できる。
我々の発見は、スタイル転送のようなスタイル表現を必要とする下流アプリケーションへの扉を開くかもしれない。
論文 参考訳(メタデータ) (2023-08-22T15:10:45Z) - Handwritten Text Generation from Visual Archetypes [25.951540903019467]
Few-Shotスタイルの手書きテキスト生成のためのTransformerベースのモデルを提案する。
我々は,大規模な合成データセット上で,特定の事前学習を活用することで,目に見えない作者の書跡の堅牢な表現を得る。
論文 参考訳(メタデータ) (2023-03-27T14:58:20Z) - Character-Aware Models Improve Visual Text Rendering [57.19915686282047]
現在の画像生成モデルは、十分に整形されたビジュアルテキストを生成するのに苦労している。
文字認識モデルは、新しい綴りタスクに大きな利益をもたらす。
われわれのモデルでは、ビジュアルスペルの精度は比較的高く、稀な単語の競合よりも30以上の精度が向上した。
論文 参考訳(メタデータ) (2022-12-20T18:59:23Z) - UIT-HWDB: Using Transferring Method to Construct A Novel Benchmark for
Evaluating Unconstrained Handwriting Image Recognition in Vietnamese [2.8360662552057323]
ベトナム語では、現代のラテン文字以外にアクセントと文字マークがあり、最新式の手書き認識法に混乱をもたらす。
低リソース言語として、ベトナムで手書き認識を研究するためのデータセットは少ない。
最近の研究は,ペンストローク座標を接続して構築したオンライン手書きデータセットの画像を用いてベトナムにおけるオフライン手書き認識手法の評価を行っている。
本稿では,オフライン手書き画像に必要な重要な自然属性を関連付ける手書き画像データセットを構築するための転送手法を提案する。
論文 参考訳(メタデータ) (2022-11-10T08:23:54Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Toward Understanding WordArt: Corner-Guided Transformer for Scene Text
Recognition [63.6608759501803]
我々は芸術的テキストを3つのレベルで認識することを提案する。
コーナーポイントは、文字内の局所的な特徴の抽出を誘導するために用いられる。
第二に、文字レベルの特徴をモデル化するために文字の対照的な損失を設計し、文字分類のための特徴表現を改善する。
第3に,Transformerを用いて画像レベルのグローバルな特徴を学習し,コーナーポイントのグローバルな関係をモデル化する。
論文 参考訳(メタデータ) (2022-07-31T14:11:05Z) - Letter-level Online Writer Identification [86.13203975836556]
我々は文字レベルのオンラインライタIDという新たな問題に焦点をあてる。
主な課題は、しばしば異なるスタイルで手紙を書くことである。
我々はこの問題をオンライン書記スタイルのばらつき(Var-O-Styles)と呼ぶ。
論文 参考訳(メタデータ) (2021-12-06T07:21:53Z) - Vectorization and Rasterization: Self-Supervised Learning for Sketch and
Handwriting [168.91748514706995]
自己監督型機能学習のための2つの新しいクロスモーダル翻訳プリテキストタスクを提案する:ベクトル化とラスタリゼーション。
当社の学習したエンコーダモジュールは、手書きデータを分析するために、ベースとベクターの両方のダウンストリームアプローチに役立ちます。
論文 参考訳(メタデータ) (2021-03-25T09:47:18Z) - Interpretable Distance Metric Learning for Handwritten Chinese Character
Recognition [8.233701182710035]
手書き漢字認識のための解釈可能な距離距離距離学習手法を提案する。
ベンチマークデータセットにおける実験結果は,提案手法の効率,正確性,解釈性に優れることを示す。
論文 参考訳(メタデータ) (2021-03-17T15:17:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。