論文の概要: Location Sensitive Image Retrieval and Tagging
- arxiv url: http://arxiv.org/abs/2007.03375v1
- Date: Tue, 7 Jul 2020 12:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 19:59:33.970886
- Title: Location Sensitive Image Retrieval and Tagging
- Title(参考訳): 位置感性画像検索とタグ付け
- Authors: Raul Gomez, Jaume Gibert, Lluis Gomez, Dimosthenis Karatzas
- Abstract要約: LocSensは画像、タグ、座標の三つ子を可視性でランク付けするモデルである。
LocSensは画像、タグ、座標の三重項を可視性でランク付けするモデルであり、最終的なランク付けにおける位置の影響をバランス付けるための2つのトレーニング戦略である。
- 参考スコア(独自算出の注目度): 10.832389603397603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People from different parts of the globe describe objects and concepts in
distinct manners. Visual appearance can thus vary across different geographic
locations, which makes location a relevant contextual information when
analysing visual data. In this work, we address the task of image retrieval
related to a given tag conditioned on a certain location on Earth. We present
LocSens, a model that learns to rank triplets of images, tags and coordinates
by plausibility, and two training strategies to balance the location influence
in the final ranking. LocSens learns to fuse textual and location information
of multimodal queries to retrieve related images at different levels of
location granularity, and successfully utilizes location information to improve
image tagging.
- Abstract(参考訳): 世界の異なる部分の人々は、異なる方法でオブジェクトや概念を記述します。
これにより、視覚的外見は異なる地理的な場所によって変化し、視覚的データを分析する際に、位置が関連するコンテキスト情報となる。
本研究では,地球上の特定の位置で条件付けされたタグに関する画像検索の課題に対処する。
我々は,画像,タグ,座標の三重項のランク付けを再現性によって学習するモデルlocsensと,最終ランキングにおける位置の影響のバランスをとるための2つのトレーニング戦略を提案する。
LocSensは、マルチモーダルクエリのテキスト情報と位置情報を融合して、さまざまなレベルの位置の粒度で関連画像を検索し、ロケーション情報を利用して画像タグ付けを改善する。
関連論文リスト
- AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization [57.34659640776723]
そこで我々は,より意味論的に問題を解決するために,AddressCLIPというエンドツーエンドのフレームワークを提案する。
われわれはピッツバーグとサンフランシスコに3つのデータセットを構築した。
論文 参考訳(メタデータ) (2024-07-11T03:18:53Z) - CurriculumLoc: Enhancing Cross-Domain Geolocalization through
Multi-Stage Refinement [11.108860387261508]
ビジュアルジオローカライゼーションはコスト効率が高くスケーラブルなタスクであり、未知の場所で撮影された1つ以上のクエリイメージとジオタグ付き参照イメージのセットをマッチングする。
我々は,グローバルな意味認識と局所的幾何学的検証を備えたキーポイント検出と記述法であるCurriculumLocを開発した。
我々は、ALTOで62.6%と94.5%の新しいハイリコール@1スコアをそれぞれ2つの異なる距離で達成した。
論文 参考訳(メタデータ) (2023-11-20T08:40:01Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Are Local Features All You Need for Cross-Domain Visual Place
Recognition? [13.519413608607781]
視覚的位置認識は、視覚的手がかりのみに基づいて画像の座標を予測することを目的としている。
近年の進歩にもかかわらず、クエリがかなり異なる分布から来るのと同じ場所を認識することは、依然として最先端の検索手法にとって大きなハードルである。
本研究では,空間的検証に基づく手法がこれらの課題に対処できるかどうかを考察する。
論文 参考訳(メタデータ) (2023-04-12T14:46:57Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
地理的レベルの異なる関係を利用して、エンドツーエンドのトランスフォーマーベースのアーキテクチャを導入する。
4つの標準ジオローカライゼーションデータセット上で,アートストリートレベルの精度を実現する。
論文 参考訳(メタデータ) (2023-03-07T21:47:58Z) - G^3: Geolocation via Guidebook Grounding [92.46774241823562]
本研究では,人間が位置情報に用いている視覚的特徴を記述した人書きガイドブックから,明示的な知識について検討する。
多様な場所からのストリートビュー画像のデータセットを用いたガイドブックグラウンディングによるジオロケーションのタスクを提案する。
提案手法は,Top-1の精度が5%以上向上し,最先端の画像のみの位置決め法よりも大幅に向上する。
論文 参考訳(メタデータ) (2022-11-28T16:34:40Z) - Benchmarking Image Retrieval for Visual Localization [41.38065116577011]
視覚的ローカライゼーションは、自律運転や拡張現実といったテクノロジーの中核的なコンポーネントである。
これらのタスクには最先端の画像検索アルゴリズムを用いるのが一般的である。
本稿では,複数の視覚的ローカライゼーションタスクにおける画像検索の役割を理解することに焦点を当てる。
論文 参考訳(メタデータ) (2020-11-24T07:59:52Z) - City-Scale Visual Place Recognition with Deep Local Features Based on
Multi-Scale Ordered VLAD Pooling [5.274399407597545]
本稿では,コンテンツに基づく画像検索に基づいて,都市規模で位置認識を行うシステムを提案する。
まず,視覚的位置認識の包括的分析を行い,その課題を概観する。
次に,画像表現ベクトルに空間情報を埋め込むために,畳み込み型ニューラルネットワークアクティベーションを用いた単純なプーリング手法を提案する。
論文 参考訳(メタデータ) (2020-09-19T15:21:59Z) - Geometrically Mappable Image Features [85.81073893916414]
地図内のエージェントの視覚に基づくローカライゼーションは、ロボット工学とコンピュータビジョンにおいて重要な問題である。
本稿では,画像検索を対象とした画像特徴学習手法を提案する。
論文 参考訳(メタデータ) (2020-03-21T15:36:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。