論文の概要: Detecting Signatures of Early-stage Dementia with Behavioural Models
Derived from Sensor Data
- arxiv url: http://arxiv.org/abs/2007.03615v1
- Date: Fri, 3 Jul 2020 18:46:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:11:20.787157
- Title: Detecting Signatures of Early-stage Dementia with Behavioural Models
Derived from Sensor Data
- Title(参考訳): センサデータに基づく行動モデルを用いた早期認知症候の検出
- Authors: Rafael Poyiadzi and Weisong Yang and Yoav Ben-Shlomo and Ian Craddock
and Liz Coulthard and Raul Santos-Rodriguez and James Selwood and Niall
Twomey
- Abstract要約: 本稿では, 軽度認知障害 (MCI) とアルツハイマー病 (AD) のテクステアリー段階における行動徴候を特徴付けることを目的とする。
本稿では,MCI と AD の患者から得られた縦型センサデータのデータセットに,行動モデルと重要な症状の分析を導入し,それらを展開する。
予備的な知見は、認知症早期の患者と健康な共生制御において、睡眠の質と歩行の関係が微妙に異なることを示している。
- 参考スコア(独自算出の注目度): 3.390976757989381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a pressing need to automatically understand the state and
progression of chronic neurological diseases such as dementia. The emergence of
state-of-the-art sensing platforms offers unprecedented opportunities for
indirect and automatic evaluation of disease state through the lens of
behavioural monitoring. This paper specifically seeks to characterise
behavioural signatures of mild cognitive impairment (MCI) and Alzheimer's
disease (AD) in the \textit{early} stages of the disease. We introduce bespoke
behavioural models and analyses of key symptoms and deploy these on a novel
dataset of longitudinal sensor data from persons with MCI and AD. We present
preliminary findings that show the relationship between levels of sleep quality
and wandering can be subtly different between patients in the early stages of
dementia and healthy cohabiting controls.
- Abstract(参考訳): 認知症などの慢性神経疾患の状態や進行を自動で理解する必要性が強まっている。
最先端センシングプラットフォームの出現は、行動監視レンズを通して病気状態の間接的および自動評価を行う前例のない機会を提供する。
本研究の目的は,軽度認知障害 (mci) とアルツハイマー病 (ad) の行動的特徴を,この疾患の早期発症段階において特徴づけることである。
本稿では,MCI と AD の患者から得られた縦型センサデータのデータセットに,行動モデルと重要な症状の分析を導入し,それらを展開する。
本研究は,認知症早期の患者と健常者の共住コントロールとの間に,睡眠の質と遊行の関係が微妙に異なることを示す予備的知見を示す。
関連論文リスト
- Deep Learning for Early Alzheimer Disease Detection with MRI Scans [1.9806397201363817]
アルツハイマー病は、患者のMRIスキャンと神経心理学的検査の詳細な評価によって診断を必要とする。
本研究は,AD診断の精度と効率を向上させるために,既存のディープラーニングモデルと比較する。
感度,特異性,計算効率を考慮した厳密な評価を行い,各モデルの強みと弱みを判定する。
論文 参考訳(メタデータ) (2025-01-17T07:30:16Z) - Dynamic Classification of Latent Disease Progression with Auxiliary Surrogate Labels [4.997489272248076]
進化する健康情報に基づく疾患進展予測は、真の疾患状態が不明な場合に困難である。
我々は,主観的ラベルを用いた適応的前方回帰アルゴリズムを開発した。
漸近特性が確立され, 有限試料による顕著な改善が示された。
論文 参考訳(メタデータ) (2024-12-11T04:14:15Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
本稿では、アルツハイマー病の予測に使用されるモデルの様々なカテゴリを、それぞれの学習手法で概説する。
それは、アルツハイマー病の進行を早期に予測し、検出する比較研究を確立している。
最後に,ロバストかつ高精度な検出モデルを提案する。
論文 参考訳(メタデータ) (2021-10-10T11:44:16Z) - Preclinical Stage Alzheimer's Disease Detection Using Magnetic Resonance
Image Scans [10.120835953459247]
アルツハイマー病(英語: Alzheimer's disease)は、高齢者に老化を伴わない病気の一つ。
早期にアルツハイマー病を検出することが重要である。
論文 参考訳(メタデータ) (2020-11-28T14:25:30Z) - Predicting Early Indicators of Cognitive Decline from Verbal Utterances [2.387625146176821]
認知症 (Dementia) は、記憶障害、コミュニケーション障害、思考過程を引き起こす、不可逆的、慢性的、進歩的な神経変性疾患のグループである。
神経心理学試験における発話の言語的特徴を用いて,高齢者コントロールグループ,MCI,アルツハイマー病(AD)とADの鑑別が可能かを検討した。
以上の結果から, 高齢者の言語発話, MCI, AD, ADの区別が, 文脈的, 心理言語学的特徴の組合せによって改善されることが示唆された。
論文 参考訳(メタデータ) (2020-11-19T02:24:11Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。