論文の概要: Scribble-based Domain Adaptation via Co-segmentation
- arxiv url: http://arxiv.org/abs/2007.03632v2
- Date: Thu, 6 Aug 2020 15:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 20:09:10.208510
- Title: Scribble-based Domain Adaptation via Co-segmentation
- Title(参考訳): 共セグメンテーションによるクリブルベースドメイン適応
- Authors: Reuben Dorent, Samuel Joutard, Jonathan Shapey, Sotirios Bisdas, Neil
Kitchen, Robert Bradford, Shakeel Saeed, Marc Modat, Sebastien Ourselin, Tom
Vercauteren
- Abstract要約: 本稿では,構造化学習とコセグメンテーションに基づくドメイン適応の新しい定式化を提案する。
提案手法は教師なし手法より優れ,完全教師付き手法に匹敵する性能を実現する。
- 参考スコア(独自算出の注目度): 2.6387256734209523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep convolutional networks have reached state-of-the-art
performance in many medical image segmentation tasks, they have typically
demonstrated poor generalisation capability. To be able to generalise from one
domain (e.g. one imaging modality) to another, domain adaptation has to be
performed. While supervised methods may lead to good performance, they require
to fully annotate additional data which may not be an option in practice. In
contrast, unsupervised methods don't need additional annotations but are
usually unstable and hard to train. In this work, we propose a novel
weakly-supervised method. Instead of requiring detailed but time-consuming
annotations, scribbles on the target domain are used to perform domain
adaptation. This paper introduces a new formulation of domain adaptation based
on structured learning and co-segmentation. Our method is easy to train, thanks
to the introduction of a regularised loss. The framework is validated on
Vestibular Schwannoma segmentation (T1 to T2 scans). Our proposed method
outperforms unsupervised approaches and achieves comparable performance to a
fully-supervised approach.
- Abstract(参考訳): 深い畳み込みネットワークは、多くの医療画像分割タスクで最先端のパフォーマンスに達しているが、一般的には一般化能力に乏しい。
ある領域(例えば1つのイメージングモダリティ)から別の領域に一般化できるためには、ドメイン適応を行う必要がある。
教師付きメソッドは優れたパフォーマンスをもたらすかもしれないが、実際にはオプションではない追加データを完全にアノテートする必要がある。
対照的に、教師なしメソッドは追加のアノテーションを必要としないが、通常不安定で訓練が難しい。
本研究では,新しい弱教師付き手法を提案する。
詳細だが時間を要するアノテーションを必要とする代わりに、対象ドメインのスクリブルを使用してドメイン適応を実行する。
本稿では,構造化学習と協調学習に基づく新しいドメイン適応の定式化について述べる。
我々の方法は定期的な損失の導入により訓練が容易です。
このフレームワークはVestibular Schwannoma segmentation (T1 to T2 scans)で検証されている。
提案手法は,教師なしアプローチよりも優れており,教師なしアプローチと同等の性能を実現している。
関連論文リスト
- DAWN: Domain-Adaptive Weakly Supervised Nuclei Segmentation via Cross-Task Interactions [17.68742587885609]
現在の弱い制御された核分割アプローチは、2段階の擬似ラベル生成とネットワークトレーニングプロセスに従う。
本稿では,クロスタスクインタラクション戦略を用いたドメイン適応型弱教師付き核セグメンテーションフレームワークを提案する。
提案手法の有効性を検証するため,6つのデータセットに対して広範囲な比較・アブレーション実験を行った。
論文 参考訳(メタデータ) (2024-04-23T12:01:21Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Shallow Features Guide Unsupervised Domain Adaptation for Semantic
Segmentation at Class Boundaries [21.6953660626021]
ディープニューラルネットワークは、合成から現実への適応を行う際に、新しいドメインに対して一般化することができない。
本研究では,より鋭い予測を得られるような,新しい低レベル適応戦略を提案する。
また、自己学習に擬似ラベルを用いる場合、意味境界に典型的なノイズを緩和する効果的なデータ拡張も導入する。
論文 参考訳(メタデータ) (2021-10-06T15:05:48Z) - Semi-supervised Meta-learning with Disentanglement for
Domain-generalised Medical Image Segmentation [15.351113774542839]
新たなセンター(ここではドメイン)からの新しいデータにモデルを一般化することは、依然として課題である。
本稿では,絡み合いを伴う半教師付きメタラーニングフレームワークを提案する。
提案手法は,異なるセグメンテーションタスクに対して頑健であり,2つの公開ベンチマーク上での最先端の一般化性能を実現する。
論文 参考訳(メタデータ) (2021-06-24T19:50:07Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDAはラベル付きソースドメインからラベルなしターゲットドメインへの効率的な知識伝達を試みている。
本稿では,領域にまたがるカテゴリ別センタロイドを適応させるコントラスト学習手法を提案する。
提案手法を自己学習で拡張し,メモリ効率の良い時間アンサンブルを用いて一貫性と信頼性の高い擬似ラベルを生成する。
論文 参考訳(メタデータ) (2021-05-05T11:55:53Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
畳み込みニューラルネットワークに基づくアプローチは、セマンティックセグメンテーションにおいて顕著な進歩を遂げた。
この制限に対処するために、グラフィックエンジンから生成された注釈付きデータを使用してセグメンテーションモデルをトレーニングする。
ドメイン間およびドメイン間ギャップを最小化する2段階の自己教師付きドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T15:24:11Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
本稿では,教師なし領域適応の簡易な手法について述べる。一方の低周波スペクトルを他方と交換することにより,音源と対象分布の相違を低減できる。
本手法を意味的セグメンテーション(semantic segmentation, 意味的セグメンテーション, 意味的セグメンテーション)で説明する。
以上の結果から,より高度な手法が学習に苦しむデータにおいて,単純な手順であってもニュアンス変動を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-11T22:20:48Z) - A simple baseline for domain adaptation using rotation prediction [17.539027866457673]
目標は、あるドメインでトレーニングされたモデルを、注釈付きデータが少ない別のドメインに適応させることだ。
本稿では,自己教師付き学習に基づく簡易かつ効果的な手法を提案する。
提案手法は,DomainNetデータセット上での半教師付きドメイン適応における最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2019-12-26T17:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。