Cross-lingual Inductive Transfer to Detect Offensive Language
- URL: http://arxiv.org/abs/2007.03771v1
- Date: Tue, 7 Jul 2020 20:10:31 GMT
- Title: Cross-lingual Inductive Transfer to Detect Offensive Language
- Authors: Kartikey Pant and Tanvi Dadu
- Abstract summary: We introduce a cross-lingual inductive approach to identify the offensive language in tweets using the contextual word embedding textitXLM-RoBERTa (XLM-R)
We show that our model performs competitively on all five languages.
- Score: 3.655021726150369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing use of social media and its availability, many instances of
the use of offensive language have been observed across multiple languages and
domains. This phenomenon has given rise to the growing need to detect the
offensive language used in social media cross-lingually. In OffensEval 2020,
the organizers have released the \textit{multilingual Offensive Language
Identification Dataset} (mOLID), which contains tweets in five different
languages, to detect offensive language. In this work, we introduce a
cross-lingual inductive approach to identify the offensive language in tweets
using the contextual word embedding \textit{XLM-RoBERTa} (XLM-R). We show that
our model performs competitively on all five languages, obtaining the fourth
position in the English task with an F1-score of $0.919$ and eighth position in
the Turkish task with an F1-score of $0.781$. Further experimentation proves
that our model works competitively in a zero-shot learning environment, and is
extensible to other languages.
Related papers
- Decoupled Vocabulary Learning Enables Zero-Shot Translation from Unseen Languages [55.157295899188476]
neural machine translation systems learn to map sentences of different languages into a common representation space.
In this work, we test this hypothesis by zero-shot translating from unseen languages.
We demonstrate that this setup enables zero-shot translation from entirely unseen languages.
arXiv Detail & Related papers (2024-08-05T07:58:58Z) - Event Extraction in Basque: Typologically motivated Cross-Lingual Transfer-Learning Analysis [18.25948580496853]
Cross-lingual transfer-learning is widely used in Event Extraction for low-resource languages.
This paper studies whether the typological similarity between source and target languages impacts the performance of cross-lingual transfer.
arXiv Detail & Related papers (2024-04-09T15:35:41Z) - Multilingual Word Embeddings for Low-Resource Languages using Anchors
and a Chain of Related Languages [54.832599498774464]
We propose to build multilingual word embeddings (MWEs) via a novel language chain-based approach.
We build MWEs one language at a time by starting from the resource rich source and sequentially adding each language in the chain till we reach the target.
We evaluate our method on bilingual lexicon induction for 4 language families, involving 4 very low-resource (5M tokens) and 4 moderately low-resource (50M) target languages.
arXiv Detail & Related papers (2023-11-21T09:59:29Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Languages You Know Influence Those You Learn: Impact of Language
Characteristics on Multi-Lingual Text-to-Text Transfer [4.554080966463776]
Multi-lingual language models (LM) have been remarkably successful in enabling natural language tasks in low-resource languages.
We try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages.
A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer.
arXiv Detail & Related papers (2022-12-04T07:22:21Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
We study three language properties: constituent order, composition and word co-occurrence.
Our main conclusion is that the contribution of constituent order and word co-occurrence is limited, while the composition is more crucial to the success of cross-linguistic transfer.
arXiv Detail & Related papers (2022-03-16T07:09:35Z) - Syntax-augmented Multilingual BERT for Cross-lingual Transfer [37.99210035238424]
This work shows that explicitly providing language syntax and training mBERT helps cross-lingual transfer.
Experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks.
arXiv Detail & Related papers (2021-06-03T21:12:50Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.