Confirmation of the PPLB derivative discontinuity: Exact chemical
potential at finite temperatures of a model system
- URL: http://arxiv.org/abs/2007.03840v4
- Date: Wed, 29 Jul 2020 03:32:36 GMT
- Title: Confirmation of the PPLB derivative discontinuity: Exact chemical
potential at finite temperatures of a model system
- Authors: Francisca Sagredo, Kieron Burke
- Abstract summary: A simple model for the chemical potential at vanishing temperature played a crucial role in Perdew, Parr, Levy, and Balduz's 1982 paper.
We find exact agreement in the crucial zero-temperature limit, and show the model remains accurate for a significant range of temperatures.
We extend the model to approximate free energies accounting for the derivative discontinuity, a feature missing in standard semi-local approximations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The landmark 1982 paper of Perdew, Parr, Levy, and Balduz (often called PPLB)
laid the foundation for our modern understanding of the role of the derivative
discontinuity in density functional theory, which drives much development to
account for its effects. A simple model for the chemical potential at vanishing
temperature played a crucial role in their argument. We investigate the
validity of this model in the simplest non-trivial system to which it can be
applied and which can be easily solved exactly, the Hubbard dimer. We find
exact agreement in the crucial zero-temperature limit, and show the model
remains accurate for a significant range of temperatures. We identify how this
range depends on the strength of correlations. We extend the model to
approximate free energies accounting for the derivative discontinuity, a
feature missing in standard semi-local approximations. We provide a correction
to this approximation to yield even more accurate free energies. We discuss the
relevance of these results for warm dense matter.
Related papers
- Thermodynamics-Consistent Graph Neural Networks [50.0791489606211]
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
arXiv Detail & Related papers (2024-07-08T06:58:56Z) - Deep generative modelling of canonical ensemble with differentiable thermal properties [0.9421843976231371]
We propose a variational modelling method with differentiable temperature for canonical ensembles.
Using a deep generative model, the free energy is estimated and minimized simultaneously in a continuous temperature range.
The training process requires no dataset, and works with arbitrary explicit density generative models.
arXiv Detail & Related papers (2024-04-29T03:41:49Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Gravity-related collapse of the wave function and spontaneous heating:
revisiting the experimental bounds [0.0]
We argue that the the parameter-free version of the DP model is close to be ruled out by standard heat leak measurements at ultralow temperature.
This result would strengthen a recent claim of exclusion inferred by spontaneous x-ray emission experiments.
arXiv Detail & Related papers (2021-09-30T10:21:42Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - The most accurate quantum thermoelectric [0.0]
Thermodynamic Uncertainty Relations (TURs) represent a benchmark result in non-equilibrium physics.
We rigorously demonstrate that the transmission function which maximizes the reliability of thermoelectric devices is a collection of boxcar functions.
This allows us to show that TURs can be violated by arbitrarily large amounts, depending on the temperature and chemical potential gradients.
arXiv Detail & Related papers (2021-06-18T16:18:19Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Driven-dissipative Ising Model: An exact field-theoretical analysis [0.0]
Driven-dissipative many-body systems are difficult to analyze analytically due to their non-equilibrium dynamics, dissipation and many-body interactions.
We develop an exact field-theoretical analysis and a diagrammatic representation of the spin model that can be understood from a simple scattering picture.
arXiv Detail & Related papers (2021-01-13T19:00:21Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.