Thermodynamics-Consistent Graph Neural Networks
- URL: http://arxiv.org/abs/2407.18372v1
- Date: Mon, 8 Jul 2024 06:58:56 GMT
- Title: Thermodynamics-Consistent Graph Neural Networks
- Authors: Jan G. Rittig, Alexander Mitsos,
- Abstract summary: We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
- Score: 50.0791489606211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures. The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy and using thermodynamic relations to obtain activity coefficients. As these are differential, automatic differentiation is applied to learn the activity coefficients in an end-to-end manner. Since the architecture is based on fundamental thermodynamics, we do not require additional loss terms to learn thermodynamic consistency. As the output is a fundamental property, we neither impose thermodynamic modeling limitations and assumptions. We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
Related papers
- Force-current structure in Markovian open quantum systems and its applications: geometric housekeeping-excess decomposition and thermodynamic trade-off relations [0.0]
We show that the entropy production rate is given by the product of the force and current operators.
The framework constitutes a comprehensive analogy with the nonequilibrium thermodynamics of discrete classical systems.
arXiv Detail & Related papers (2024-10-30T01:10:58Z) - Correlated quantum machines beyond the standard second law [0.0]
We derive exact generalized laws of quantum thermodynamics for arbitrary, time-periodic, open systems.
Our results provide a unified formalism to determine the efficiency of correlated microscopic thermal devices.
arXiv Detail & Related papers (2024-09-12T10:09:20Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics [0.0]
We extend the Carath'eodory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables.
This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics.
arXiv Detail & Related papers (2024-07-11T09:50:39Z) - Quantum thermodynamics of nonequilibrium processes in lattice gauge theories [0.0]
We show how to define thermodynamic quantities using strong-coupling thermodynamics.
Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators.
arXiv Detail & Related papers (2024-04-03T18:00:03Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions.
We include the Gibbs-Duhem equation explicitly in the loss function for training neural networks.
arXiv Detail & Related papers (2023-05-31T07:36:45Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Asymptotic entropy of the Gibbs state of complex networks [68.8204255655161]
The Gibbs state is obtained from the Laplacian, normalized Laplacian or adjacency matrices associated with a graph.
We calculated the entropy of the Gibbs state for a few classes of graphs and studied their behavior with changing graph order and temperature.
Our results show that the behavior of Gibbs entropy as a function of the temperature differs for a choice of real networks when compared to the random ErdHos-R'enyi graphs.
arXiv Detail & Related papers (2020-03-18T18:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.