Winning with Simple Learning Models: Detecting Earthquakes in Groningen,
the Netherlands
- URL: http://arxiv.org/abs/2007.03924v1
- Date: Wed, 8 Jul 2020 07:06:09 GMT
- Title: Winning with Simple Learning Models: Detecting Earthquakes in Groningen,
the Netherlands
- Authors: Umair bin Waheed, Ahmed Shaheen, Mike Fehler, Ben Fulcher
- Abstract summary: Recently, seismologists have also demonstrated the efficacy of deep learning algorithms in detecting low magnitude earthquakes.
Here, we revisit the problem of seismic event detection but using a logistic regression model with feature extraction.
Using a simple learning model with only five trainable parameters, we detect several low-magnitude induced earthquakes from the Groningen gas field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is fast emerging as a potential disruptive tool to tackle
longstanding research problems across the sciences. Notwithstanding its success
across disciplines, the recent trend of the overuse of deep learning is
concerning to many machine learning practitioners. Recently, seismologists have
also demonstrated the efficacy of deep learning algorithms in detecting low
magnitude earthquakes. Here, we revisit the problem of seismic event detection
but using a logistic regression model with feature extraction. We select
well-discriminating features from a huge database of time-series operations
collected from interdisciplinary time-series analysis methods. Using a simple
learning model with only five trainable parameters, we detect several
low-magnitude induced earthquakes from the Groningen gas field that are not
present in the catalog. We note that the added advantage of simpler models is
that the selected features add to our understanding of the noise and event
classes present in the dataset. Since simpler models are easy to maintain,
debug, understand, and train, through this study we underscore that it might be
a dangerous pursuit to use deep learning without carefully weighing simpler
alternatives.
Related papers
- RECOVAR: Representation Covariances on Deep Latent Spaces for Seismic Event Detection [0.0]
We develop an unsupervised method for earthquake detection that learns to detect earthquakes from raw waveforms.
The performance is comparable to, and in some cases better than, some state-of-the-art supervised methods.
The approach has the potential to be useful for time series datasets from other domains.
arXiv Detail & Related papers (2024-07-25T21:33:54Z) - Exploring Challenges in Deep Learning of Single-Station Ground Motion
Records [0.0]
Experimental results reveal a strong reliance on the highly correlated P and S phase arrival information.
Our observations highlight a potential gap in the field, indicating an absence of robust methodologies for deep learning of single-station ground motion recordings.
arXiv Detail & Related papers (2024-03-12T11:56:50Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
This thesis explores a different answer to the problem of learning expressive models in data constrained settings.
Instead of relying on big datasets to learn neural networks, we will replace some modules by known functions reflecting the structure of the data.
Our approach falls under the hood of "inductive biases", which can be defined as hypothesis on the data at hand restricting the space of models to explore.
arXiv Detail & Related papers (2023-02-21T14:22:01Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Deep vs. Shallow Learning: A Benchmark Study in Low Magnitude Earthquake
Detection [0.0]
We build on an existing logistic regression model by adding four further features using elastic net driven data mining.
We evaluate the performance of the augmented logistic regression model relative to a deep (CNN) model, pre-trained on the Groningen data, on progressively increasing noise-to-signal ratios.
We discover that, for each ratio, our logistic regression model correctly detects every earthquake, while the deep model fails to detect nearly 20 % of seismic events.
arXiv Detail & Related papers (2022-05-01T17:59:18Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.