Statistical post-processing of wind speed forecasts using convolutional
neural networks
- URL: http://arxiv.org/abs/2007.04005v2
- Date: Fri, 8 Jan 2021 11:49:59 GMT
- Title: Statistical post-processing of wind speed forecasts using convolutional
neural networks
- Authors: Simon Veldkamp, Kirien Whan, Sjoerd Dirksen and Maurice Schmeits
- Abstract summary: We use spatial wind speed information by using convolutional neural networks (CNNs) and obtain probabilistic wind speed forecasts in the Netherlands for 48 hours ahead.
The CNNs are shown to have higher Brier skill scores for medium to higher wind speeds, as well as a better continuous ranked probability score (CRPS) and logarithmic score, than the forecasts from fully connected neural networks and quantile regression forests.
- Score: 0.7646713951724009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current statistical post-processing methods for probabilistic weather
forecasting are not capable of using full spatial patterns from the numerical
weather prediction (NWP) model. In this paper we incorporate spatial wind speed
information by using convolutional neural networks (CNNs) and obtain
probabilistic wind speed forecasts in the Netherlands for 48 hours ahead, based
on KNMI's deterministic Harmonie-Arome NWP model. The probabilistic forecasts
from the CNNs are shown to have higher Brier skill scores for medium to higher
wind speeds, as well as a better continuous ranked probability score (CRPS) and
logarithmic score, than the forecasts from fully connected neural networks and
quantile regression forests. As a secondary result, we have compared the CNNs
using 3 different density estimation methods (quantized softmax (QS), kernel
mixture networks, and fitting a truncated normal distribution), and found the
probabilistic forecasts based on the QS method to be best.
Related papers
- Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
Method combines conditional generative adversarial networks (CGANs) with a convolutional neural network (CNN) to post-process convection-allowing model (CAM) forecasts.
The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts.
The method produced skillful predictions with up to 20% Brier Skill Score (BSS) increases compared to other neural-network-based reference methods.
arXiv Detail & Related papers (2023-10-09T18:02:11Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
We combine an autoregressive recurrent neural network to model temporal dynamics with Implicit Quantile Networks to learn a large class of distributions over a time-series target.
Our approach is favorable in terms of point-wise prediction accuracy as well as on estimating the underlying temporal distribution.
arXiv Detail & Related papers (2021-07-08T10:37:24Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Post-processing Multi-Model Medium-Term Precipitation Forecasts Using
Convolutional Neural Networks [0.0]
Instead of post-processing forecasts on a per-pixel basis, input forecast images were combined and transformed into probabilistic output forecast images using fully convolutional neural networks.
CNNs did not outperform regularized logistic regression.
arXiv Detail & Related papers (2021-05-14T19:30:48Z) - A computationally efficient neural network for predicting weather
forecast probabilities [0.0]
We take the novel approach of using a neural network to predict probability density functions rather than a single output value.
This enables the calculation of both uncertainty and skill metrics for the neural network predictions.
This approach is purely data-driven and the neural network is trained on the WeatherBench dataset.
arXiv Detail & Related papers (2021-03-26T12:28:15Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.