Probabilistic Time Series Forecasting with Implicit Quantile Networks
- URL: http://arxiv.org/abs/2107.03743v1
- Date: Thu, 8 Jul 2021 10:37:24 GMT
- Title: Probabilistic Time Series Forecasting with Implicit Quantile Networks
- Authors: Ad\`ele Gouttes, Kashif Rasul, Mateusz Koren, Johannes Stephan, Tofigh
Naghibi
- Abstract summary: We combine an autoregressive recurrent neural network to model temporal dynamics with Implicit Quantile Networks to learn a large class of distributions over a time-series target.
Our approach is favorable in terms of point-wise prediction accuracy as well as on estimating the underlying temporal distribution.
- Score: 0.7249731529275341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Here, we propose a general method for probabilistic time series forecasting.
We combine an autoregressive recurrent neural network to model temporal
dynamics with Implicit Quantile Networks to learn a large class of
distributions over a time-series target. When compared to other probabilistic
neural forecasting models on real- and simulated data, our approach is
favorable in terms of point-wise prediction accuracy as well as on estimating
the underlying temporal distribution.
Related papers
- Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
Sequential models like recurrent neural networks and transformers have become standard for probabilistic time series forecasting.
Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting.
This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on interpolants and conditional generation with control features.
arXiv Detail & Related papers (2024-09-18T03:52:48Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Probabilistic Forecasting with Generative Networks via Scoring Rule
Minimization [5.5643498845134545]
We use generative neural networks to parametrize distributions on high-dimensional spaces by transforming draws from a latent variable.
We train generative networks to minimize a predictive-sequential (or prequential) scoring rule on a recorded temporal sequence of the phenomenon of interest.
Our method outperforms state-of-the-art adversarial approaches, especially in probabilistic calibration.
arXiv Detail & Related papers (2021-12-15T15:51:12Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
We propose two approaches to constructing deep time series probabilistic models.
The first is where the output layer of the ESN has disturbances and a shrinkage prior for additional regularization.
The second approach employs the implicit copula of an ESN with Gaussian disturbances, which is a deep copula process on the feature space.
arXiv Detail & Related papers (2020-10-05T08:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.