Robust pricing and hedging via neural SDEs
- URL: http://arxiv.org/abs/2007.04154v1
- Date: Wed, 8 Jul 2020 14:33:17 GMT
- Title: Robust pricing and hedging via neural SDEs
- Authors: Patryk Gierjatowicz and Marc Sabate-Vidales and David \v{S}i\v{s}ka
and Lukasz Szpruch and \v{Z}an \v{Z}uri\v{c}
- Abstract summary: We develop and analyse novel algorithms needed for efficient use of neural SDEs.
We find robust bounds for prices of derivatives and the corresponding hedging strategies while incorporating relevant market data.
Neural SDEs allow consistent calibration under both the risk-neutral and the real-world measures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical modelling is ubiquitous in the financial industry and drives key
decision processes. Any given model provides only a crude approximation to
reality and the risk of using an inadequate model is hard to detect and
quantify. By contrast, modern data science techniques are opening the door to
more robust and data-driven model selection mechanisms. However, most machine
learning models are "black-boxes" as individual parameters do not have
meaningful interpretation. The aim of this paper is to combine the above
approaches achieving the best of both worlds. Combining neural networks with
risk models based on classical stochastic differential equations (SDEs), we
find robust bounds for prices of derivatives and the corresponding hedging
strategies while incorporating relevant market data. The resulting model called
neural SDE is an instantiation of generative models and is closely linked with
the theory of causal optimal transport. Neural SDEs allow consistent
calibration under both the risk-neutral and the real-world measures. Thus the
model can be used to simulate market scenarios needed for assessing risk
profiles and hedging strategies. We develop and analyse novel algorithms needed
for efficient use of neural SDEs. We validate our approach with numerical
experiments using both local and stochastic volatility models.
Related papers
- Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
We present two classes of models, one with neural networks as reward estimators, and the other with energy based models.
We show that both techniques outperform well-known standard algorithms, where energy based models have the best overall performance.
This provides practitioners with new techniques that perform well in static and dynamic settings, and are particularly well suited to non-linear scenarios with continuous action spaces.
arXiv Detail & Related papers (2022-10-12T15:09:45Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Estimating risks of option books using neural-SDE market models [6.319314191226118]
We use an arbitrage-free neural-SDE market model to produce realistic scenarios for the joint dynamics of multiple European options on a single underlying.
We show that our models are more computationally efficient and accurate for evaluating the Value-at-Risk (VaR) of option portfolios, with better coverage performance and less procyclicality than standard filtered historical simulation approaches.
arXiv Detail & Related papers (2022-02-15T02:39:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Arbitrage-free neural-SDE market models [6.145654286950278]
We develop a nonparametric model for the European options book respecting underlying financial constraints.
We study the inference problem where a model is learnt from discrete time series data of stock and option prices.
We use neural networks as function approximators for the drift and diffusion of the modelled SDE system.
arXiv Detail & Related papers (2021-05-24T00:53:10Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellman aims to fill this gap and introduces the first thoroughly designed and tested model-based RL toolbox.
Our modular approach enables to combine a wide range of environment models with generic model-based agent classes that recover state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-26T11:32:27Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.