論文の概要: A Multi-Level Approach to Waste Object Segmentation
- arxiv url: http://arxiv.org/abs/2007.04259v1
- Date: Wed, 8 Jul 2020 16:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 13:23:42.603603
- Title: A Multi-Level Approach to Waste Object Segmentation
- Title(参考訳): 廃棄物オブジェクト分割へのマルチレベルアプローチ
- Authors: Tao Wang and Yuanzheng Cai and Lingyu Liang and Dongyi Ye
- Abstract要約: カラー画像とオプションの深度画像から廃棄物を局所化する問題に対処する。
本手法は,複数の空間的粒度レベルでの強度と深度情報を統合する。
我々は, この領域における今後の研究を促進するために, 新たなRGBD廃棄物分節MJU-Wasteを作成している。
- 参考スコア(独自算出の注目度): 10.20384144853726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of localizing waste objects from a color image and an
optional depth image, which is a key perception component for robotic
interaction with such objects. Specifically, our method integrates the
intensity and depth information at multiple levels of spatial granularity.
Firstly, a scene-level deep network produces an initial coarse segmentation,
based on which we select a few potential object regions to zoom in and perform
fine segmentation. The results of the above steps are further integrated into a
densely connected conditional random field that learns to respect the
appearance, depth, and spatial affinities with pixel-level accuracy. In
addition, we create a new RGBD waste object segmentation dataset, MJU-Waste,
that is made public to facilitate future research in this area. The efficacy of
our method is validated on both MJU-Waste and the Trash Annotation in Context
(TACO) dataset.
- Abstract(参考訳): 本稿では,カラー画像から無駄な物体を局所化する問題と,そのような物体とロボットが相互作用する上で重要な知覚成分である奥行き画像について論じる。
具体的には,複数の空間的粒度レベルでの強度と深度情報を統合する。
まず、シーンレベルのディープネットワークが初期粗いセグメンテーションを生成し、そこでいくつかの潜在的なオブジェクト領域を選択してズームインして細かなセグメンテーションを行う。
上記のステップの結果はさらに密結合された条件付きランダムフィールドに統合され、ピクセルレベルの精度で外観、深さ、空間親和性を尊重する。
さらに, この領域における今後の研究を促進するために, 新たにRGBD 廃棄物オブジェクト分割データセット MJU-Waste を作成した。
本手法の有効性は,MJU-WasteとTrash Annotation in Context (TACO)データセットの両方で検証される。
関連論文リスト
- Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
本稿では,この課題を効果的に解決するディープスガイド型テクスチャ拡散手法を提案する。
本手法は,テクスチャ画像を作成するために,エッジやテクスチャから低レベル特徴を抽出する。
この拡張深度マップを元のRGB画像と結合した特徴埋め込みに統合することにより,深度マップと画像との相違を効果的に橋渡しする。
論文 参考訳(メタデータ) (2024-08-17T04:55:03Z) - LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
本稿では, 乱れ場面におけるロボットグルーピングのためのアモーダルセグメンテーションを探求する枠組みを提案する。
線形融合注意誘導畳み込みネットワーク(LAC-Net)を提案する。
その結果,本手法が最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-06T14:50:48Z) - FusionVision: A comprehensive approach of 3D object reconstruction and segmentation from RGB-D cameras using YOLO and fast segment anything [1.5728609542259502]
本稿では,RGB-D画像におけるオブジェクトの堅牢な3次元セグメンテーションに適応した,徹底的なパイプラインであるFusionVisionを紹介する。
提案したFusionVisionパイプラインでは、RGBイメージ領域内のオブジェクトの識別にYOLOを使用している。
これらのコンポーネント間の相乗効果と3次元シーン理解への統合により、オブジェクトの検出とセグメンテーションの密接な融合が保証される。
論文 参考訳(メタデータ) (2024-02-29T22:59:27Z) - DeepMerge: Deep-Learning-Based Region-Merging for Image Segmentation [7.063322114865965]
本稿では,DeepMergeと呼ばれる深層学習に基づく領域マージ手法を提案する。
これは、ディープラーニングを用いて類似性を学習し、RAGに隣接する類似のスーパーピクセルをマージする最初の方法である。
DeepMergeは最も高いF値(0.9550)と最も低い総誤差TE(0.0895)を達成し、異なるサイズのオブジェクトを正しく分割し、競合する全てのセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2023-05-31T12:27:58Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL)メソッドは、複数のオブジェクトでイメージを処理する際に、画像レベルの特徴表現を使用する際の制限に対処する。
本研究は, 層深度やゼロパディングに伴う受容野の増大によって生じる, 結合と位置バイアスに悩まされていることを示す。
我々はCOCOにおける本手法の利点と、オブジェクト分類、セマンティックセグメンテーション、オブジェクト検出のための新しい挑戦的ベンチマークであるOpenImage-MINIについて示す。
論文 参考訳(メタデータ) (2023-03-29T18:07:25Z) - Sharp Eyes: A Salient Object Detector Working The Same Way as Human
Visual Characteristics [3.222802562733787]
本稿では,まず被写体をシーンから分離し,それを細分化するシャープアイネットワーク(SENet)を提案する。
提案手法は,拡張オブジェクトを用いてネットワークを誘導し,完全な予測を行う。
論文 参考訳(メタデータ) (2023-01-18T11:00:45Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Meticulous Object Segmentation [37.48446050876045]
Meticulous Object segmentation (MOS) というタスクを提案し,検討する。
MeticulousNetは専用のデコーダを使用してオブジェクト境界の詳細をキャプチャする。
我々は,MeticulousNetが画素精度のセグメンテーション境界を明確化できることを示す実証的証拠を提供する。
論文 参考訳(メタデータ) (2020-12-13T23:38:40Z) - Learning RGB-D Feature Embeddings for Unseen Object Instance
Segmentation [67.88276573341734]
合成データからRGB-D特徴埋め込みを学習し,オブジェクトのインスタンスセグメンテーションを未確認する手法を提案する。
距離学習損失関数を用いて画素単位の機能埋め込みを学習する。
新たな2段階クラスタリングアルゴリズムにより,セグメンテーションの精度をさらに向上する。
論文 参考訳(メタデータ) (2020-07-30T00:23:07Z) - Counting dense objects in remote sensing images [52.182698295053264]
特定の画像から関心のあるオブジェクトの数を推定するのは、難しいが重要な作業である。
本稿では,リモートセンシング画像から高密度物体を数えることに興味がある。
これらの課題に対処するために,我々はまず,リモートセンシング画像に基づく大規模オブジェクトカウントデータセットを構築した。
次に、入力画像の密度マップを生成する新しいニューラルネットワークを設計することで、データセットをベンチマークする。
論文 参考訳(メタデータ) (2020-02-14T09:13:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。