Learning from DPPs via Sampling: Beyond HKPV and symmetry
- URL: http://arxiv.org/abs/2007.04287v1
- Date: Wed, 8 Jul 2020 17:33:45 GMT
- Title: Learning from DPPs via Sampling: Beyond HKPV and symmetry
- Authors: R\'emi Bardenet and Subhroshekhar Ghosh
- Abstract summary: We show how to approximate the distribution function of a linear statistic of a Determinantal point processes (DPP)
Our approach is scalable and applies to very general DPPs, beyond traditional symmetric kernels.
- Score: 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determinantal point processes (DPPs) have become a significant tool for
recommendation systems, feature selection, or summary extraction, harnessing
the intrinsic ability of these probabilistic models to facilitate sample
diversity. The ability to sample from DPPs is paramount to the empirical
investigation of these models. Most exact samplers are variants of a spectral
meta-algorithm due to Hough, Krishnapur, Peres and Vir\'ag (henceforth HKPV),
which is in general time and resource intensive. For DPPs with symmetric
kernels, scalable HKPV samplers have been proposed that either first downsample
the ground set of items, or force the kernel to be low-rank, using e.g.
Nystr\"om-type decompositions.
In the present work, we contribute a radically different approach than HKPV.
Exploiting the fact that many statistical and learning objectives can be
effectively accomplished by only sampling certain key observables of a DPP
(so-called linear statistics), we invoke an expression for the Laplace
transform of such an observable as a single determinant, which holds in
complete generality. Combining traditional low-rank approximation techniques
with Laplace inversion algorithms from numerical analysis, we show how to
directly approximate the distribution function of a linear statistic of a DPP.
This distribution function can then be used in hypothesis testing or to
actually sample the linear statistic, as per requirement. Our approach is
scalable and applies to very general DPPs, beyond traditional symmetric
kernels.
Related papers
- Gaussian Process Probes (GPP) for Uncertainty-Aware Probing [61.91898698128994]
We introduce a unified and simple framework for probing and measuring uncertainty about concepts represented by models.
Our experiments show it can (1) probe a model's representations of concepts even with a very small number of examples, (2) accurately measure both epistemic uncertainty (how confident the probe is) and aleatory uncertainty (how fuzzy the concepts are to the model), and (3) detect out of distribution data using those uncertainty measures as well as classic methods do.
arXiv Detail & Related papers (2023-05-29T17:00:16Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Adaptive Sketches for Robust Regression with Importance Sampling [64.75899469557272]
We introduce data structures for solving robust regression through gradient descent (SGD)
Our algorithm effectively runs $T$ steps of SGD with importance sampling while using sublinear space and just making a single pass over the data.
arXiv Detail & Related papers (2022-07-16T03:09:30Z) - Scalable Sampling for Nonsymmetric Determinantal Point Processes [47.18450267217498]
A determinantal point process (DPP) on a collection of $M$ items is a model, parameterized by a symmetric kernel matrix.
Recent work shows that removing the kernel symmetry constraint, yielding nonsymmetric DPPs (NDPPs), can lead to significant predictive performance gains for machine learning applications.
There is only one known DPP sampling algorithm, based on Cholesky decomposition, that can directly apply to NDPPs as well.
We show that imposing certain structural constraints on the NDPP kernel enables us to bound the rejection rate in a way that depends only on the kernel rank.
arXiv Detail & Related papers (2022-01-20T19:21:59Z) - Determinantal point processes based on orthogonal polynomials for
sampling minibatches in SGD [0.0]
gradient descent (SGD) is a cornerstone of machine learning.
default minibatch construction involves uniformly sampling a subset of the desired size.
We show how specific DPPs and a string of controlled approximations can lead to gradient estimators with a variance that decays faster with the batchsize than under uniform sampling.
arXiv Detail & Related papers (2021-12-11T15:09:19Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Nonparametric estimation of continuous DPPs with kernel methods [0.0]
Parametric and nonparametric inference methods have been proposed in the finite case, i.e. when the point patterns live in a finite ground set.
We show that a restricted version of this maximum likelihood (MLE) problem falls within the scope of a recent representer theorem for nonnegative functions in an RKHS.
We propose, analyze, and demonstrate a fixed point algorithm to solve this finite-dimensional problem.
arXiv Detail & Related papers (2021-06-27T11:57:14Z) - Simple and Near-Optimal MAP Inference for Nonsymmetric DPPs [3.3504365823045044]
We study the problem of maximum a posteriori (MAP) inference for determinantal point processes defined by a nonsymmetric kernel matrix.
We obtain the first multiplicative approximation guarantee for this problem using local search.
Our approximation factor of $kO(k)$ is nearly tight, and we show theoretically and experimentally that it compares favorably to the state-of-the-art methods for this problem.
arXiv Detail & Related papers (2021-02-10T09:34:44Z) - Determinantal Point Processes in Randomized Numerical Linear Algebra [80.27102478796613]
Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc.
Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms.
arXiv Detail & Related papers (2020-05-07T00:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.