Simple and Near-Optimal MAP Inference for Nonsymmetric DPPs
- URL: http://arxiv.org/abs/2102.05347v1
- Date: Wed, 10 Feb 2021 09:34:44 GMT
- Title: Simple and Near-Optimal MAP Inference for Nonsymmetric DPPs
- Authors: Nima Anari and Thuy-Duong Vuong
- Abstract summary: We study the problem of maximum a posteriori (MAP) inference for determinantal point processes defined by a nonsymmetric kernel matrix.
We obtain the first multiplicative approximation guarantee for this problem using local search.
Our approximation factor of $kO(k)$ is nearly tight, and we show theoretically and experimentally that it compares favorably to the state-of-the-art methods for this problem.
- Score: 3.3504365823045044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determinantal point processes (DPPs) are widely popular probabilistic models
used in machine learning to capture diversity in random subsets of items. While
traditional DPPs are defined by a symmetric kernel matrix, recent work has
shown a significant increase in the modeling power and applicability of models
defined by nonsymmetric kernels, where the model can capture interactions that
go beyond diversity. We study the problem of maximum a posteriori (MAP)
inference for determinantal point processes defined by a nonsymmetric positive
semidefinite matrix (NDPPs), where the goal is to find the maximum $k\times k$
principal minor of the kernel matrix $L$. We obtain the first multiplicative
approximation guarantee for this problem using local search, a method that has
been previously applied to symmetric DPPs. Our approximation factor of
$k^{O(k)}$ is nearly tight, and we show theoretically and experimentally that
it compares favorably to the state-of-the-art methods for this problem that are
based on greedy maximization. The main new insight enabling our improved
approximation factor is that we allow local search to update up to two elements
of the solution in each iteration, and we show this is necessary to have any
multiplicative approximation guarantee.
Related papers
- Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation.
We propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP)
We show that LOOP achieves a sublinear $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret, where $d$ and $beta$ correspond to AGEC and log-covering number of the hypothesis class respectively
arXiv Detail & Related papers (2024-04-19T06:24:22Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
We develop low-complexity algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold.
The proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix.
arXiv Detail & Related papers (2023-05-03T11:11:46Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes [45.40646054226403]
A determinantal point process (DPP) assigns a probability to every subset of $n$ items.
Recent work has studied an approximate chain Monte Carlo sampling algorithm for NDPPs restricted to size-$k$ subsets.
We develop a scalable MCMC sampling algorithm for $k$-NDPPs with low-rank kernels.
arXiv Detail & Related papers (2022-07-01T15:22:12Z) - Nonparametric estimation of continuous DPPs with kernel methods [0.0]
Parametric and nonparametric inference methods have been proposed in the finite case, i.e. when the point patterns live in a finite ground set.
We show that a restricted version of this maximum likelihood (MLE) problem falls within the scope of a recent representer theorem for nonnegative functions in an RKHS.
We propose, analyze, and demonstrate a fixed point algorithm to solve this finite-dimensional problem.
arXiv Detail & Related papers (2021-06-27T11:57:14Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
We study the noiseless model in the fundamental least-squares setup.
We assume that an optimum predictor fits perfectly inputs and outputs $langle theta_*, phi(X) rangle = Y$, where $phi(X)$ stands for a possibly infinite dimensional non-linear feature map.
arXiv Detail & Related papers (2021-02-05T14:02:20Z) - Exact and Approximation Algorithms for Sparse PCA [1.7640556247739623]
This paper proposes two exact mixed-integer SDPs (MISDPs)
We then analyze the theoretical optimality gaps of their continuous relaxation values and prove that they are stronger than that of the state-of-art one.
Since off-the-shelf solvers, in general, have difficulty in solving MISDPs, we approximate SPCA with arbitrary accuracy by a mixed-integer linear program (MILP) of a similar size as MISDPs.
arXiv Detail & Related papers (2020-08-28T02:07:08Z) - Determinantal Point Processes in Randomized Numerical Linear Algebra [80.27102478796613]
Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc.
Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms.
arXiv Detail & Related papers (2020-05-07T00:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.