Deep Placental Vessel Segmentation for Fetoscopic Mosaicking
- URL: http://arxiv.org/abs/2007.04349v1
- Date: Wed, 8 Jul 2020 18:09:40 GMT
- Title: Deep Placental Vessel Segmentation for Fetoscopic Mosaicking
- Authors: Sophia Bano, Francisco Vasconcelos, Luke M. Shepherd, Emmanuel Vander
Poorten, Tom Vercauteren, Sebastien Ourselin, Anna L. David, Jan Deprest and
Danail Stoyanov
- Abstract summary: We propose a solution utilising the U-Net architecture for performing placental vessel segmentation in fetoscopic videos.
Experiments on 6 different in vivo fetoscopic videos demonstrate that the vessel intensity-based registration outperformed image intensity-based registration approaches.
- Score: 12.90721035124636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During fetoscopic laser photocoagulation, a treatment for twin-to-twin
transfusion syndrome (TTTS), the clinician first identifies abnormal placental
vascular connections and laser ablates them to regulate blood flow in both
fetuses. The procedure is challenging due to the mobility of the environment,
poor visibility in amniotic fluid, occasional bleeding, and limitations in the
fetoscopic field-of-view and image quality. Ideally, anastomotic placental
vessels would be automatically identified, segmented and registered to create
expanded vessel maps to guide laser ablation, however, such methods have yet to
be clinically adopted. We propose a solution utilising the U-Net architecture
for performing placental vessel segmentation in fetoscopic videos. The obtained
vessel probability maps provide sufficient cues for mosaicking alignment by
registering consecutive vessel maps using the direct intensity-based technique.
Experiments on 6 different in vivo fetoscopic videos demonstrate that the
vessel intensity-based registration outperformed image intensity-based
registration approaches showing better robustness in qualitative and
quantitative comparison. We additionally reduce drift accumulation to
negligible even for sequences with up to 400 frames and we incorporate a scheme
for quantifying drift error in the absence of the ground-truth. Our paper
provides a benchmark for fetoscopy placental vessel segmentation and
registration by contributing the first in vivo vessel segmentation and
fetoscopic videos dataset.
Related papers
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - C-DARL: Contrastive diffusion adversarial representation learning for
label-free blood vessel segmentation [39.79157116429435]
This paper presents a self-supervised vessel segmentation method, dubbed the contrastive diffusion adversarial representation learning (C-DARL) model.
Our model is composed of a diffusion module and a generation module that learns the distribution of multi-domain blood vessel data.
To validate the efficacy, C-DARL is trained using various vessel datasets, including coronary angiograms, abdominal digital subtraction angiograms, and retinal imaging.
arXiv Detail & Related papers (2023-07-31T23:09:01Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
In Twin-to-Twin Transfusion Syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can produce uneven blood flow between the two fetuses.
We propose a learning-based framework for in-vivo fetoscopy frame registration for field-of-view expansion.
arXiv Detail & Related papers (2022-07-26T21:21:12Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
Fetoscopic laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS)
The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination.
Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking.
Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fet
arXiv Detail & Related papers (2022-06-24T23:44:42Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Detection of Retinal Blood Vessels by using Gabor filter with Entropic
threshold [0.0]
This paper introduces a programmed strategy to identify and dispense with the blood vessels.
The blood vessels recognized and wiped out by utilizing Gobar filter on two freely accessible retinal databases.
arXiv Detail & Related papers (2020-08-25T16:51:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.