C-DARL: Contrastive diffusion adversarial representation learning for
label-free blood vessel segmentation
- URL: http://arxiv.org/abs/2308.00193v1
- Date: Mon, 31 Jul 2023 23:09:01 GMT
- Title: C-DARL: Contrastive diffusion adversarial representation learning for
label-free blood vessel segmentation
- Authors: Boah Kim, Yujin Oh, Bradford J. Wood, Ronald M. Summers, Jong Chul Ye
- Abstract summary: This paper presents a self-supervised vessel segmentation method, dubbed the contrastive diffusion adversarial representation learning (C-DARL) model.
Our model is composed of a diffusion module and a generation module that learns the distribution of multi-domain blood vessel data.
To validate the efficacy, C-DARL is trained using various vessel datasets, including coronary angiograms, abdominal digital subtraction angiograms, and retinal imaging.
- Score: 39.79157116429435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blood vessel segmentation in medical imaging is one of the essential steps
for vascular disease diagnosis and interventional planning in a broad spectrum
of clinical scenarios in image-based medicine and interventional medicine.
Unfortunately, manual annotation of the vessel masks is challenging and
resource-intensive due to subtle branches and complex structures. To overcome
this issue, this paper presents a self-supervised vessel segmentation method,
dubbed the contrastive diffusion adversarial representation learning (C-DARL)
model. Our model is composed of a diffusion module and a generation module that
learns the distribution of multi-domain blood vessel data by generating
synthetic vessel images from diffusion latent. Moreover, we employ contrastive
learning through a mask-based contrastive loss so that the model can learn more
realistic vessel representations. To validate the efficacy, C-DARL is trained
using various vessel datasets, including coronary angiograms, abdominal digital
subtraction angiograms, and retinal imaging. Experimental results confirm that
our model achieves performance improvement over baseline methods with noise
robustness, suggesting the effectiveness of C-DARL for vessel segmentation.
Related papers
- KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-09-19T14:21:38Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
We propose the first diffusion-based model (named DiffMIC) to address general medical image classification.
Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-03-19T09:15:45Z) - Diffusion Adversarial Representation Learning for Self-supervised Vessel
Segmentation [36.65094442100924]
Vessel segmentation in medical images is one of the important tasks in the diagnosis of vascular diseases and therapy planning.
We introduce a novel diffusion adversarial representation learning (DARL) model that leverages a denoising diffusion probabilistic model with adversarial learning.
Our method significantly outperforms existing unsupervised and self-supervised methods in vessel segmentation.
arXiv Detail & Related papers (2022-09-29T06:06:15Z) - RAVIR: A Dataset and Methodology for the Semantic Segmentation and
Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance
Imaging [7.316426736150123]
We present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging.
We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins.
Our experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models.
arXiv Detail & Related papers (2022-03-28T17:30:29Z) - Categorical Relation-Preserving Contrastive Knowledge Distillation for
Medical Image Classification [75.27973258196934]
We propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor.
With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance.
With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively.
arXiv Detail & Related papers (2021-07-07T13:56:38Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.