Journey Towards Tiny Perceptual Super-Resolution
- URL: http://arxiv.org/abs/2007.04356v1
- Date: Wed, 8 Jul 2020 18:24:40 GMT
- Title: Journey Towards Tiny Perceptual Super-Resolution
- Authors: Royson Lee, {\L}ukasz Dudziak, Mohamed Abdelfattah, Stylianos I.
Venieris, Hyeji Kim, Hongkai Wen, Nicholas D. Lane
- Abstract summary: We propose a neural architecture search (NAS) approach that integrates NAS and generative adversarial networks (GANs) with recent advances in perceptual SR.
Our tiny perceptual SR (TPSR) models outperform SRGAN and EnhanceNet on both full-reference perceptual metric (LPIPS) and distortion metric (PSNR)
- Score: 23.30464519074935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works in single-image perceptual super-resolution (SR) have
demonstrated unprecedented performance in generating realistic textures by
means of deep convolutional networks. However, these convolutional models are
excessively large and expensive, hindering their effective deployment to end
devices. In this work, we propose a neural architecture search (NAS) approach
that integrates NAS and generative adversarial networks (GANs) with recent
advances in perceptual SR and pushes the efficiency of small perceptual SR
models to facilitate on-device execution. Specifically, we search over the
architectures of both the generator and the discriminator sequentially,
highlighting the unique challenges and key observations of searching for an
SR-optimized discriminator and comparing them with existing discriminator
architectures in the literature. Our tiny perceptual SR (TPSR) models
outperform SRGAN and EnhanceNet on both full-reference perceptual metric
(LPIPS) and distortion metric (PSNR) while being up to 26.4$\times$ more memory
efficient and 33.6$\times$ more compute efficient respectively.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Swift Parameter-free Attention Network for Efficient Super-Resolution [8.365929625909509]
Single Image Super-Resolution is a crucial task in low-level computer vision.
We propose the Swift.
parameter-free Attention Network (SPAN), which balances parameter count, inference speed, and image quality.
We evaluate SPAN on multiple benchmarks, showing that it outperforms existing efficient super-resolution models in terms of both image quality and inference speed.
arXiv Detail & Related papers (2023-11-21T18:30:40Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - A-ESRGAN: Training Real-World Blind Super-Resolution with Attention
U-Net Discriminators [0.0]
Blind image super-resolution(SR) is a long-standing task in CV that aims to restore low-resolution images suffering from unknown and complex distortions.
We present A-ESRGAN, a GAN model for blind SR tasks featuring an attention U-Net based, multi-scale discriminator.
arXiv Detail & Related papers (2021-12-19T02:50:23Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - Lightweight Residual Densely Connected Convolutional Neural Network [18.310331378001397]
The lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network.
The proposed method decreases the cost of training and inference processes without using any special hardware-software equipment.
arXiv Detail & Related papers (2020-01-02T17:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.