Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive
Physics Informed Neural Networks
- URL: http://arxiv.org/abs/2007.04542v1
- Date: Thu, 9 Jul 2020 03:49:59 GMT
- Title: Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive
Physics Informed Neural Networks
- Authors: Colby L. Wight and Jia Zhao
- Abstract summary: This paper focuses on using the deep neural network to design an automatic numerical solver for the Allen-Cahn and Cahn-Hilliard equations.
We propose various techniques that add to the approximation power of the PINN.
- Score: 5.031093893882574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase field models, in particular, the Allen-Cahn type and Cahn-Hilliard type
equations, have been widely used to investigate interfacial dynamic problems.
Designing accurate, efficient, and stable numerical algorithms for solving the
phase field models has been an active field for decades. In this paper, we
focus on using the deep neural network to design an automatic numerical solver
for the Allen-Cahn and Cahn-Hilliard equations by proposing an improved physics
informed neural network (PINN). Though the PINN has been embraced to
investigate many differential equation problems, we find a direct application
of the PINN in solving phase-field equations won't provide accurate solutions
in many cases. Thus, we propose various techniques that add to the
approximation power of the PINN. As a major contribution of this paper, we
propose to embrace the adaptive idea in both space and time and introduce
various sampling strategies, such that we are able to improve the efficiency
and accuracy of the PINN on solving phase field equations. In addition, the
improved PINN has no restriction on the explicit form of the PDEs, making it
applicable to a wider class of PDE problems, and shedding light on numerical
approximations of other PDEs in general.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
We propose a new kind of data-driven PDEs solver, physics-informed cell representations (PIXEL)
PIXEL elegantly combines classical numerical methods and learning-based approaches.
We show that PIXEL achieves fast convergence speed and high accuracy.
arXiv Detail & Related papers (2022-07-26T10:46:56Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems [0.0]
In this work, we combine two classes of numerical methods: (i) physics-informed neural networks (PINNs) and (ii) adaptive spectral methods.
The numerical methods that we develop take advantage of the ability of physics-informed neural networks to easily implement high-order numerical schemes to efficiently solve PDEs.
We then show how recently introduced adaptive techniques for spectral methods can be integrated into PINN-based PDE solvers to obtain numerical solutions of unbounded domain problems that cannot be efficiently approximated by standard PINNs.
arXiv Detail & Related papers (2022-02-06T05:25:22Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.