Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks
- URL: http://arxiv.org/abs/2206.09321v1
- Date: Sun, 19 Jun 2022 04:12:01 GMT
- Title: Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks
- Authors: Shamsulhaq Basir, Inanc Senocak
- Abstract summary: Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
- Score: 0.9137554315375919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have been proposed to learn the
solution of partial differential equations (PDE). In PINNs, the residual form
of the PDE of interest and its boundary conditions are lumped into a composite
objective function as soft penalties. Here, we show that this specific way of
formulating the objective function is the source of severe limitations in the
PINN approach when applied to different kinds of PDEs. To address these
limitations, we propose a versatile framework based on a constrained
optimization problem formulation, where we use the augmented Lagrangian method
(ALM) to constrain the solution of a PDE with its boundary conditions and any
high-fidelity data that may be available. Our approach is adept at forward and
inverse problems with multi-fidelity data fusion. We demonstrate the efficacy
and versatility of our physics- and equality-constrained deep-learning
framework by applying it to several forward and inverse problems involving
multi-dimensional PDEs.Our framework achieves orders of magnitude improvements
in accuracy levels in comparison with state-of-the-art physics-informed neural
networks.
Related papers
- Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I [0.0]
This research focuses on the development of a physics informed deep learning framework to approximate solutions to nonlinear PDEs.
The framework naturally handles imposition of boundary conditions (Neumann/Dirichlet), entropy conditions, and regularity requirements.
arXiv Detail & Related papers (2023-07-09T08:27:17Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
We propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solution for partial differential equations (PDEs)
The proposed approach combines admissible NURBS parametrizations required to define the physical domain and the Dirichlet boundary conditions with a PINN solver.
arXiv Detail & Related papers (2022-10-25T10:35:45Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
Graph neural networks show promise in accurately representing irregularly meshed objects and learning their dynamics.
In this work, we represent meshes naturally as graphs, process these using Graph Networks, and formulate our physics-based loss to provide an unsupervised learning framework for partial differential equations (PDE)
Our framework will enable the application of PDE solvers in interactive settings, such as model-based control of soft-body deformations.
arXiv Detail & Related papers (2022-03-30T19:22:56Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.