論文の概要: Probabilistic Value Selection for Space Efficient Model
- arxiv url: http://arxiv.org/abs/2007.04641v1
- Date: Thu, 9 Jul 2020 08:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 03:57:44.763015
- Title: Probabilistic Value Selection for Space Efficient Model
- Title(参考訳): 空間効率モデルにおける確率的値選択
- Authors: Gunarto Sindoro Njoo, Baihua Zheng, Kuo-Wei Hsu, and Wen-Chih Peng
- Abstract要約: 情報理論の計量に基づく2つの確率的手法が提案されている: PVS と P + VS。
実験結果から,値選択は精度とモデルサイズ削減のバランスがとれることがわかった。
- 参考スコア(独自算出の注目度): 10.109875612945658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An alternative to current mainstream preprocessing methods is proposed: Value
Selection (VS). Unlike the existing methods such as feature selection that
removes features and instance selection that eliminates instances, value
selection eliminates the values (with respect to each feature) in the dataset
with two purposes: reducing the model size and preserving its accuracy. Two
probabilistic methods based on information theory's metric are proposed: PVS
and P + VS. Extensive experiments on the benchmark datasets with various sizes
are elaborated. Those results are compared with the existing preprocessing
methods such as feature selection, feature transformation, and instance
selection methods. Experiment results show that value selection can achieve the
balance between accuracy and model size reduction.
- Abstract(参考訳): 現在の主流のプリプロセッシング手法の代替として、Value Selection (VS) が提案されている。
インスタンスを削除する機能やインスタンス選択を削除する機能選択のような既存の方法とは異なり、バリューセレクションはデータセット内の値(各機能に関して)を2つの目的で削除する。
情報理論の計量に基づく2つの確率的手法が提案されている: PVS と P + VS。
これらの結果は、機能選択、特徴変換、インスタンス選択といった既存の前処理方法と比較される。
実験結果から,値選択は精度とモデルサイズ削減のバランスがとれることがわかった。
関連論文リスト
- Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
標準的なプラクティスは、データ品質という人間の考え方にマッチする例をフィルタリングすることです。
質の高い"データソースとの類似性に応じた選択は、ランダムに選択するデータに比べてパフォーマンスが向上しない(さらに傷つく)可能性がある。
我々のフレームワークは、データ品質に関する手作業による概念を回避し、学習プロセスがターゲットタスクの予測にデータポイントをトレーニングする方法を明確にモデル化する。
論文 参考訳(メタデータ) (2024-01-23T17:22:00Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - Finding Optimal Diverse Feature Sets with Alternative Feature Selection [0.0]
代替機能の選択を導入し、最適化問題として定式化する。
特に,制約によって代替品を定義し,利用者が代替品の数や相違を制御できるようにする。
本研究では,一定要素近似が一定の条件下で存在することを示し,対応する探索法を提案する。
論文 参考訳(メタデータ) (2023-07-21T14:23:41Z) - A model-free feature selection technique of feature screening and random
forest based recursive feature elimination [0.0]
質量特徴を持つ超高次元データのモデルフリー特徴選択法を提案する。
提案手法は選択整合性を示し, 弱正則条件下では$L$整合性を示す。
論文 参考訳(メタデータ) (2023-02-15T03:39:16Z) - Parallel feature selection based on the trace ratio criterion [4.30274561163157]
本研究は,PFSTを用いた並列特徴選択という,新しい並列特徴選択手法を提案する。
提案手法は,Fisher's Discriminant Analysisで用いられるクラス分離性の尺度であるトレース基準を用いて特徴的有用性を評価する。
実験により,本手法は,比較対象の他の手法による時間的差のごく一部で,少数の特徴セットを生成できることが確認された。
論文 参考訳(メタデータ) (2022-03-03T10:50:33Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Few-shot Learning for Unsupervised Feature Selection [59.75321498170363]
教師なし特徴選択のための数ショット学習法を提案する。
提案手法では,未ラベルのターゲットインスタンスがいくつかある場合,対象タスクで関連する特徴のサブセットを選択することができる。
提案手法が既存の特徴選択法より優れていることを示す。
論文 参考訳(メタデータ) (2021-07-02T03:52:51Z) - Feature Selection Methods for Cost-Constrained Classification in Random
Forests [3.4806267677524896]
コストに敏感な特徴選択は、機能選択の問題であり、モデルに含めるための個々のコストを上昇させる。
ランダムフォレスト(Random Forests)は、機能選択において特に困難な問題を定義している。
小木構造から特徴を選択する新しい高速多変量特徴選択法であるShallow Tree Selectionを提案する。
論文 参考訳(メタデータ) (2020-08-14T11:39:52Z) - Lookahead and Hybrid Sample Allocation Procedures for Multiple Attribute
Selection Decisions [0.9137554315375922]
本稿では、各測定値が1つの属性の1つのサンプルを1つの代替として生成する設定について考察する。
収集するサンプルが一定数与えられた場合、決定者は、どのサンプルを取得するかを決定し、測定を行い、属性の規模に関する事前の信念を更新し、代替案を選択する必要がある。
論文 参考訳(メタデータ) (2020-07-31T15:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。