A Global Stochastic Optimization Particle Filter Algorithm
- URL: http://arxiv.org/abs/2007.04803v9
- Date: Wed, 6 Jul 2022 06:41:47 GMT
- Title: A Global Stochastic Optimization Particle Filter Algorithm
- Authors: Mathieu Gerber and Randal Douc
- Abstract summary: We introduce a new algorithm for expected log-likelihood in situations where the objective function is multi-modal.
With high probability, G-PFSO successfully finds the objective function and converges to its global maximizer at the optimal rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new online algorithm for expected log-likelihood maximization
in situations where the objective function is multi-modal and/or has saddle
points, that we term G-PFSO. The key element underpinning G-PFSO is a
probability distribution which (a) is shown to concentrate on the target
parameter value as the sample size increases and (b) can be efficiently
estimated by means of a standard particle filter algorithm. This distribution
depends on a learning rate, where the faster the learning rate the quicker it
concentrates on the desired element of the search space, but the less likely
G-PFSO is to escape from a local optimum of the objective function. In order to
achieve a fast convergence rate with a slow learning rate, G-PFSO exploits the
acceleration property of averaging, well-known in the stochastic gradient
literature. Considering several challenging estimation problems, the numerical
experiments show that, with high probability, G-PFSO successfully finds the
highest mode of the objective function and converges to its global maximizer at
the optimal rate. While the focus of this work is expected log-likelihood
maximization, the proposed methodology and its theory apply more generally for
optimizing a function defined through an expectation.
Related papers
- Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Deterministic Langevin Unconstrained Optimization with Normalizing Flows [3.988614978933934]
We introduce a global, free surrogate optimization strategy for black-box functions inspired by the Fokker-Planck and Langevin equations.
We demonstrate superior competitive progress toward objective optima on standard synthetic test functions.
arXiv Detail & Related papers (2023-10-01T17:46:20Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Relaxed Gaussian process interpolation: a goal-oriented approach to
Bayesian optimization [0.0]
This work presents a new procedure for obtaining predictive distributions in the context of Gaussian process (GP) modeling.
The method called relaxed Gaussian process (reGP) provides better predictive distributions in ranges of interest.
It can be viewed as a goal-oriented method and becomes particularly interesting in Bayesian optimization.
arXiv Detail & Related papers (2022-06-07T06:26:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
Particle swarm optimization (PSO) is an iterative search method that moves a set of candidate solution around a search-space towards the best known global and local solutions with randomized step lengths.
We show that our algorithm attains desirable properties for exploratory and exploitative behavior.
arXiv Detail & Related papers (2021-02-08T13:02:57Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Convergence Analysis of Homotopy-SGD for non-convex optimization [43.71213126039448]
We present a first-order algorithm based on a combination of homotopy methods and SGD, called Gradienty-Stoch Descent (H-SGD)
Under some assumptions, we conduct a theoretical analysis of the proposed problem.
Experimental results show that H-SGD can outperform SGD.
arXiv Detail & Related papers (2020-11-20T09:50:40Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.